Space Travel News  
Spitzer Finds Organics And Water Where New Planets May Grow

This artist's concept shows a very young star encircled by a disk of gas and dust, the raw materials from which rocky planets such as Earth are thought to form. Image credit: NASA/JPL-Caltech
by Staff Writers
Pasadena CA (JPL) Mar 16, 2008
Researchers using NASA's Spitzer Space Telescope have discovered large amounts of simple organic gases and water vapor in a possible planet-forming region around an infant star, along with evidence that these molecules were created there. They've also found water in the same zone around two other young stars.

By pushing the telescope's capabilities to a new level, astronomers now have a better view of the earliest stages of planetary formation, which may help shed light on the origins of our own solar system and the potential for life to develop in others. John Carr of the Naval Research Laboratory, Washington, and Joan Najita of the National Optical Astronomy Observatory, Tucson, Ariz., developed a new technique using Spitzer's infrared spectrograph to measure and analyze the chemical composition of the gases within protoplanetary disks.

These are flattened disks of gas and dust that encircle young stars. Scientists believe they provide the building materials for planets and moons and eventually, over millions of years, evolve into orbiting planetary systems like our own.

"Most of the material within the disks is gas," said Carr, "but until now it has been difficult to study the gas composition in the regions where planets should form. Much more attention has been given to the solid dust particles, which are easier to observe."

In their project, Carr and Najita took an in-depth look at the gases in the planet-forming region in the disk around the star AA Tauri. Less than a million years old, AA Tauri is a typical example of a young star with a protoplanetary disk.

With their new procedures, they were able to detect the minute spectral signatures for three simple organic molecules--hydrogen cyanide, acetylene and carbon dioxide--plus water vapor. In addition, they found more of these substances in the disk than are found in the dense interstellar gas called molecular clouds from which the disk originated.

"Molecular clouds provide the raw material from which the protoplanetary disks are created," said Carr.

"So this is evidence for an active organic chemistry going on within the disk, forming and enhancing these molecules."

Spitzer's infrared spectrograph detected these same organic gases in a protoplanetary disk once before. But the observation was dependent on the star's disk being oriented in just the right way. Now researchers have a new method for studying the primordial mix of gases in the disks of hundreds of young star systems.

Astronomers will be able to fill an important gap--they know that water and organics are abundant in the interstellar medium but not what happens to them after they are incorporated into a disk. "Are these molecules destroyed, preserved or enhanced in the disk?" said Carr.

"Now that we can identify these molecules and inventory them, we will have a better understanding of the origins and evolution of the basic building blocks of life--where they come from and how they evolve." Carr and Najita's research results appear in the March 14 issue of Science.

Taking advantage of Spitzer's spectroscopic capabilities, another group of scientists looked for water molecules in the disks around young stars and found them--twice.

"This is one of the very few times that water vapor has been directly shown to exist in the inner part of a protoplanetary disk--the most likely place for terrestrial planets to form," said Colette Salyk, a graduate student in geological and planetary sciences at the California Institute of Technology in Pasadena. She is the lead author on a paper about the results in the March 20 issue of Astrophysical Journal Letters.

Salyk and her colleagues used Spitzer to look at dozens of young stars with protoplanetary disks and found water in many. They honed in on two stars and followed up the initial detection of water with complementary high-resolution measurements from the Keck II Telescope in Hawaii.

"While we don't detect nearly as much water as exists in the oceans on Earth, we see essentially only the disk's surface, so the implication is that the water is quite abundant," said Geoffrey Blake, professor of cosmochemistry and planetary sciences at Caltech and one of the paper's co-authors.

"This is a much larger story than just one or two disks," said Blake. "Spitzer can efficiently measure these water signatures in many objects, so this is just the beginning of what we will learn."

"With upcoming Spitzer observations and data in hand," Carr added, "we will develop a good understanding of the distribution and abundance of water and organics in planet-forming disks."

Related Links
Spitzer at CalTech
Spitzer at NASA
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


The Planets In Planetary Nebulae
Rochester NY (SPX) Mar 13, 2008
Astronomers at the University of Rochester, home to one of the world's largest groups of planetary nebulae specialists, have announced that low-mass stars and possibly even super-Jupiter-sized planets may be responsible for creating some of the most breathtaking objects in the sky.







  • New Purdue Facility Aims To Improve NASA Moon Rocket Engine
  • Space X Falcon 9 Facing More Delays As Shuttle Replacement Looms
  • SpaceX Completes Qualification Testing Of Falcon 1 Merlin Regeneratively Cooled Engine
  • First Firing Of European Staged-Combustion Demonstration Engine

  • United Launch Alliance Launches Delta 2 For US Air Force GPS Replacement Satellite
  • Russian Proton Rocket Fails To Take Satellite Into Right Orbit
  • United Launch Alliance Inaugural Atlas V West Coast Launch A Success
  • Falcon 1 To Launch Operationally Responsive Space Satellite On Next Flight

  • Space Shuttle Endeavour Docks At Space Station
  • NASA puzzles over mysterious 10-second debris
  • Endeavour prepares for ISS docking
  • Space shuttle Endeavour is launched

  • Jules Verne Demonstrates Flawless Collision Avoidance Manoeuvre
  • Spacewalkers ready next trek to complete robot
  • Spacewalkers begin Canadian robot assembly
  • Astronauts Enter Japanese Station Module; Power To Robot Restored

  • Successful Manoeuvres Position Jules Verne ATV For Crucial Tests
  • NASA Readies Hardware For Test Of Astronaut Escape System
  • New Advert To Be Broadcast Into Space
  • Russia Dumps Korean Astro Boy For Astro Girl In Textbook Scandal

  • China To Use Jumbo Rocket For Delivery Of Lunar Rover, Space Station
  • China's Recoverable Moon Rover Expected In 2017
  • First China Spacewalk On Course For October
  • China To Launch Second Olympic Satellite In May

  • iRobot Receives Award For DARPA LANdroids Program
  • Coming soon to Japan: remote control with a wink
  • Japanese cellphones to turn into 'robot' buddies
  • Killer Military Robots Pose Latest Threat To Humanity

  • Mars Express Reveals Volcanic Past Of The Red Planet
  • Women Drivers On Mars
  • HiRISE Discovers A Possibly Once-Habitable Ancient Mars Lake
  • Mechdyne Enables Virtual Reality Of Mission To Mars

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement