Space Travel News  
Researcher Observes Molecular Chaos For The First Time

Dr. Jeffrey Olafsen said the results also are beneficial to building a fundamental thermodynamics for systems driven far from equilibrium.
by Staff Writers
Waco TX (SPX) Jul 26, 2007
A Baylor University researcher has created the first experimental observation of molecular chaos, providing evidence that a widely accepted, yet unproven, assumption is indeed accurate. Molecular chaos is an assumption that the velocities of colliding particles are uncorrelated and independent of position. An example of molecular chaos is the air in any room. While the nitrogen and oxygen atoms are flying around with some average square speed because of the temperature in the room, they are not related, so the air does not spontaneously fly off in one direction of the room without some sort of external pressure change, like a window opening.

The molecular chaos assumption, which is part of the kinetic theory of gases, is widely thought to be true because everything else that arises and follows from that assumption works so well. However, it has been nearly impossible to prove the assumption, until now.

"It was very exciting when we first happened upon the observation," said Dr. Jeffrey Olafsen, associate professor of physics at Baylor and a lead investigator on the project. "Prior observations have been made in computer simulations, but this is the first time it has been measured in an experimental system."

Olafsen, in collaboration with Dr. G. William Baxter, associate professor of physics at Pennsylvania State University - Erie, constructed two "gases," or layers, of ball bearings. In the layer where molecular chaos held, researchers measured Maxwell Boltzmann statistics, like those that predict the mean square speed of particles in the air in the room. In the layer where the assumption of molecular chaos failed, the statistics did not obey Maxwell Boltzmann statistics. Perhaps the most interesting part, researchers said, is that the two "gases" were in contact with each other while simultaneously demonstrating their respective behavior.

"The two layers can be thought of as two gases simultaneously in thermal contact, and yet, one of the gases demonstrates molecular chaos while the other does not," Olafsen said. "It means that the particulars of how energy is injected and distributed within the two gases is important to understanding when a system will demonstrate molecular chaos."

Olafsen said the results also are beneficial to building a fundamental thermodynamics for systems driven far from equilibrium.

Related Links
Baylor University
Understanding Time and Space



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Theoretical Physicists Organize To Stem Outsourcing
Buffalo NY (SPX) Jul 23, 2007
Mention "outsourcing" and people tend to think of fields like manufacturing or telemarketing; theoretical physics isn't even on the list. Yet the scientists who develop theoretical predictions for high-energy particle physics experiments say "outsourcing" in their field has allowed the U.S. to lag behind in this area of high-profile, global science.







  • Astrium Wins Study For New Vega Upper Stage
  • ATK Wins Another Orion Launch Abort Subsystem Contract
  • Old Space Prepares To Buy New Space As Northrop Scoops Up Scaled Composites
  • Pratt And Whitney Rocketdyne Awarded NASA Contract For J-2X Ares Rocket Engine

  • Spaceway 3 Is Delivered To The Spaceport For Its Mid-August Ariane 5 Launch
  • Russian Space Firm Signs 14 Deals For Commercial Rocket Launches
  • Sea Launch To Resume Zenit Launches In October
  • Russia Proton-M Booster Puts US Satellite Into Orbit

  • External Tank ET-120 Headed to Kennedy Space Center
  • Flight Readiness Review Gets Under Way
  • STS-118 Crew Completes Countdown Rehearsal
  • Space Shuttle Endeavour Moved To Launch Pad

  • 2006-2007 International Space Station Science: Looking Back and Ahead...
  • ISS Orbit Adjusted To Host Shuttle Endeavor
  • Station Crew Completes Successful Spacewalk
  • New NASA System Will Help Space Station Crews Breathe Easier

  • NASA Announces Next Undersea Exploration Mission Dates And Crew
  • Congress Examines Challenges Facing Shuttle And Station Programs
  • Space Adventures Secures Seats On The Soyuz
  • Washington Conference To Examine Impact Of Civilian Space Travel On Culture And Economy

  • Chinese Astronauts Begin Training For Spacewalk
  • China Prepares To Select New Taikonauts
  • Dongfanghong 4 Ready For More International Satellite Orders
  • China To Launch Third Sino-Brazilian Satellite In September

  • Robotic Ankle For Amputees Is Developed
  • iRobot Receives New Military Orders 14 PackBot Robots
  • New Japanese Humanoid Invites Grown-Ups To Play
  • Robots Incorporated

  • Search For Life In Martian Ice Relies On UK Technology
  • Creating Martian Clay
  • Digging Deep For Martian Life
  • Opportunity Calls Home After Some Solar Juice Cranks Up The Batteries

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement