Space Travel News  
Quantum Effects Writ Large

Evidence points to quantum nature of large-scale effects
by Staff Writers
Houston TX (SPX) Feb 26, 2007
A team of physicists from Rice University, Rutgers University, and the Max Planck Institute for Chemical Physics of Solids in Dresden, Germany, this week reports in the journal Science the discovery of surprising quantum effects in a member of a broad class of materials that include high-temperature superconductors and quantum magnets.

The effects were observed in a compound that was cooled nearly to absolute zero, a temperature low enough to bring about a "quantum critical point," a tipping point at which the quantum properties of the material undergo a radical change.

"Physicists have long held that the macroscopic properties of a material at a quantum critical point are completely described in terms of fluctuations of a classical variable called the order parameter," said Rice University theoretical physicist Qimiao Si. "Our results show instead that inherently quantum effects play an important role, and that these can be seen in thermodynamic measurements."

In this week's paper, researchers reported finding telltale signs of a link between quantum effects and thermodynamic properties in the "heavy fermion" compound YbRh2Si2 (YRS) containing the elements ytterbium, rhodium and silicon. This material contains a quantum critical point that separates a magnetic phase from a non-magnetic one.

"Quantum criticality epitomizes the collective organization of a large number of microscopic particles in matter," said Rutgers theorist Elihu Abrahams. "The new research sheds light on such a collective state of strongly interacting electron systems."

The frontier of research in condensed matter physics that is involved centers on the way that quantum effects influence the physical properties of chunks of material containing many billions of billions of atoms.

The 1986 discovery of high-temperature superconductivity in copper-oxide ceramics led condensed matter theorists to realize that quantum effects of strongly correlated electron systems are much more complex than have been anticipated in textbook descriptions. One effect whose importance has been increasingly recognized over the past few years is quantum criticality.

Phase transitions, such as water vaporizing or melting, typically occur as a result of temperature change. Quantum phase transitions, by contrast, arise when the forces of quantum mechanics drive a macroscopic material from one type of order to another. A quantum critical point describes the material at the cusp of such a transition.

A quantum critical point occurs at the absolute zero of temperature, which cannot be reached experimentally. However, the effects of quantum phase transitions can be seen in the laboratory at sufficiently low temperatures. In the case at hand, a group of experimentalists at the Max Planck Institute of Chemical Physics of Solids in Dresden made exquisite measurements at very low temperatures of the properties of the metallic YRS that show a quantum phase transition between a magnetic and a non-magnetic state.

The Dresden group included Philipp Gegenwart, now at the First Physics Institute (Goettingen), Silke Paschen, now at the Institute of Solid State Physics (TU Vienna), Yoshi Tokiwa, now at Los Alamos National Laboratory (New Mexico), Cornelius Krellner, Tanya Westerkamp, Christoph Geibel, and Institute Director Frank Steglich.

"YRS is uniquely suited for our study, because it is a prototypical quantum critical material that has been well characterized," Steglich said.

Usually, phase transitions are governed by the behavior of a macroscopic variable, the order parameter. In the case of the liquid to vapor transition mentioned above, the density is the order parameter. For a quantum phase transition, an energy scale describes the energy cost to nucleate a domain with a finite order parameter in the state without that order.

This energy scale, believed to be the only relevant one by conventional wisdom, describes the fluctuations of the order parameter. The paper reports the measurements of two thermodynamic properties - magnetization and magnetostriction, or the change in volume as a function of change in magnetic field - as the material was cooled to near absolute zero.

"Our measurements revealed that a second thermodynamic energy scale exists in the YRS compound," said Philipp Gegenwart. "This additional energy scale goes beyond the theory based on fluctuations of the order parameter."

One possible explanation for this additional energy scale invokes the destruction of a quantum effect, called entanglement, at the quantum critical point. Another ascribes it to the effective disintegration of an electron into separated spin and charge carrying objects, or excitations. Regardless of the final theory, the results reported in the paper bolster the growing body of evidence for the vital role of quantum fluctuations in strongly correlated materials.

Related Links
Rice University
Powering The World in the 21st Century at Energy-Daily.com
Our Polluted World and Cleaning It Up
China News From SinoDaily.com
Global Trade News
The Economy
All About Solar Energy at SolarDaily.com
Civil Nuclear Energy Science, Technology and News
Understanding Time and Space



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Watching Atoms Move Is Goal Of Powerful New X-ray Sources
Ithica NY (SPX) Feb 23, 2007
When excited, atoms move at impossibly small length and time scales -- too small and too fast to have been observed in years past. But as applied and engineering physics professor Joel D. Brock comments in the Feb. 2 issue of Science, a new generation of X-ray sources is allowing scientists to watch atoms move. In his short paper, "Watching Atoms Move," Brock explains how scientists' understanding of matter is changing.







  • NASA Issues Ares I Upper Stage Production Request For Proposal
  • Engine Helps Satellites Blast Off With Less Fuel
  • NASA Solicits Ideas For Constellation Ground Work
  • New Space Technology Provides Less Shake Rattle And Roll

  • Satellite Launcher Arianespace Seeks To Boost US Business
  • Iran Claims Of Satellite Launch Brought Down To Earth
  • SERVIS-2 To Be Launched On Rockot
  • Russia Space Agency Hopes Sea Launch Will Resume Operation In 2007

  • Atlantis Countdown Testing Begins
  • Atlantis Rolls Out to Pad
  • Space Shuttle Closer To Launch
  • NASA's Shuttle Atlantis Rolls to Vehicle Assembly Building

  • ISS Crew Complete Hour Space Walk As Next Shuttle Crew Conduct Dry Countdown
  • Soyuz TMA-10 Spacecraft To Launch Expedition 15 Crew To ISS On April 7
  • ISS Crew Continue Preparations For Spacewalk
  • Expedition 14 Continues Preperations For February 22 Spacewalk

  • Astronauts Urged To Take Up Skiing Ahead Of Lunar Missions
  • Detecting Radiation On Lunar And Mars Missions
  • South Korean Astronauts Set For Training In Russia
  • NASA And Virgin Galactic To Explore Future Cooperation

  • If You Love Me Order Some Purple Space Potatoes
  • China, US Have No Space Cooperation
  • China To Build Fourth Satellite Launching Center In Hainan
  • Baker's Dozen Via For Chinese Lunar Rover Design

  • Vivid On-Line Videos Demonstrate SuperBot Progress
  • The Second Humanoid Robot In France
  • Robotic Exoskeleton Replaces Muscle Work
  • Robotic Arm Aids Stroke Victims

  • Spirit Continues Driving While Engineers Check Robotic Arm
  • Opportunity Continues To Characterize Crater
  • Are Human Beings The Biggest Risk Factor In Long-Term Space Missions
  • APL-Built Mineral Mapper Uncovering Clues Of Martian Surface Composition

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement