Space Travel News  
Portable Electricity, Life-Like Prosthetics On The Way

File image of piezoelectric film.
by Staff Writers
Houston TX (SPX) Nov 20, 2007
The technology that makes a cell phone vibrate is the same technology that provides more natural movements to prosthetic limbs. A University of Houston research team is working on recreating and enhancing this technological effect, which, if successful, could result in better prosthetic movements and also provide instant electrical power for soldiers and others through the simple act of walking.

Pradeep Sharma, a UH mechanical engineering professor, is leading the team to create a "piezoelectric on steroids." Piezoelectricity is the ability of some materials to generate an electric charge when placed under stress. This pioneering technology already is more useful than many people realize. Piezoelectrics are involved in everything from making an airbag deploy to how a lighter produces a flame.

Although piezoelectrics are naturally occurring, they have their limits. If an application requires a level of energy conversion not found in a naturally occurring piezoelectric, a composite consisting of piezoelectrics and non-piezoelectrics must be made. Sharma and his team are creating piezoelectrics from man-made materials that have no piezoelectric property.

"If you press on a piezoelectric, or apply mechanical force, it will produce a voltage," Sharma said. "Or, if you apply a voltage or electrical force to it, the object will bend or change its shape."

An engineered piezoelectric strip placed in the boot of a soldier would generate electricity and power the increasing number of devices that soldiers carry. The walking motion produces force or deformation of the strip, which generates electricity with every step. The highly customizable piezoelectrics also could enable the creation of prosthetics that come closer to offering both the flexibility and the strength of real limbs. Current prosthetic limbs face challenges in range and movement by the two types of naturally occurring piezoelectrics, ceramic and polymer.

"Ceramic piezoelectrics are very hard and brittle, and don't allow for a lot of movement," Sharma said. "They take a lot of electrical energy for a lot of motion. Polymers are better for large forces of motion, but don't have a lot of strength. So, you can stretch adequately, but may not even be able to pick up an egg. Nature has given us some elements, and now we're going beyond and designing materials from the ground up. We wanted to combine the best qualities of the two types of piezoelectrics, among other things."

Sharma has been working to refine his theoretical ideas for two years. His research team includes Ramanan Krishnamoorti of the UH Cullen College of Engineering, Boris Yakobson of Rice University and Zoubeida Ounaies of Texas A and M University. Krishanmoorit and Ounaies will begin putting the research to the test with the help of a $1.22 million grant from the National Science Foundation.

"The real applications of this technology are going to come from the fact that you don't have to depend on existing piezoelectrics," Sharma said. "You can create materials, using certain nanoscale effects, that give higher energy conversion. These are basically piezoelectrics on steroids."

Related Links
UH Cullen College of Engineering
Hospital and Medical News at InternDaily.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Soldiers' Facial Fractures Can Be Repaired In War Zones
San Antonio TX (SPX) Nov 20, 2007
American military personnel with facial fractures who meet certain criteria can undergo surgery to treat their injuries without being evacuated from war zones, according to a report in the November/December issue of Archives of Facial Plastic Surgery, a theme issue on orbital and ophthalmic plastic surgery.







  • Northrop Grumman Demonstrates New Rocket Engine Design Using Oxygen And Methane Propellants
  • Indigenous Cryogenic Stage Successfully Qualified
  • Groundbreaking Signals Start Of NASA Constellation Flight Tests
  • SpaceX Completes Development Of Merlin Regeneratively Cooled Rocket Engine

  • Lockheed Martin-Built Sirius 4 Launched Successfully From Baikonur Cosmodrome
  • First Soyuz Launch From Kourou Set For 2009
  • Ground Broken For New Test Launch Pad
  • Sea Launch Resumes Countdown for Thuraya-3 Launch

  • US Lawmakers Grill Space Agency On Plans For Shuttle Retirement
  • Atlantis At The Pad
  • Discovery's Return Marks Completion Of Esperia Mission
  • NASA's Space Shuttle Atlantis To Move To Launch Pad Saturday

  • Crew Moves Harmony To Front Of Space Station
  • PMA-2 Move Readies Station For Harmony Relocation
  • Russia plans more ISS modules
  • Expedition 16 Completes First Spacewalk

  • SPACEHAB Supporting Key Milestones Under NASA Space Act Agreement
  • Brazil to invest 28 bln dollars in science and technology: Lula
  • Orbital Outfitters Debuts IS3C - First-Ever Fully Functional Commercial Pressure Spacesuit
  • Europe's comet-chasing probe completes key flyby

  • China aiming to replace foreign satellites: report
  • China Completes Enclosure Of Land For Fourth Satellite Launch Center
  • China Launches New Remote Sensing Satellite
  • China launches remote sensing satellite

  • Can A Robot Find A Rock. Interview With David Wettergreen: Part IV
  • Proton Rocket To Launch Glonass Satellites Friday
  • QinetiQ Establishes Service And Support Centre For Talon Robots In Australia
  • UCSD Researchers Give Computers Common Sense

  • Mars Express Creates First Global Map Of Martian Ionosphere
  • Rover Finds Way To Brush Rock Surfaces Despite Setbacks
  • Spirit Continues Drive As Power Levels Decline
  • Opportunity's Rock Abrasion Tool Shows Anomalous Behavior

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement