Space Travel News  
Northrop Grumman Demonstrates New Rocket Engine Design Using Oxygen And Methane Propellants

by Staff Writers
Redondo Beach CA (SPX) Nov 19, 2007
Northrop Grumman successfully hot-fire tested a radically new type of rocket engine specifically designed to use oxygen and methane propellants that range from all-gas to all-liquid at the inlet to the thruster. More than 50 separate tests demonstrated high performance, operating stability and ample design margin of this 100 lbf-thrust rocket, designated the TR408.

The successful tests validate the robust capabilities and high performance of the integrated engine design. "The demonstration test results are impressive considering the broad range of conditions and operational modes tested. The engine far exceeded performance requirements and is on track to deliver a steady-state specific impulse of 340 seconds," stated Mark Trinidad, Northrop Grumman's program manager for the TR408.

The TR408 is a simple design that uses only two propellant valves, no moving parts other than valves, and contains a built-in spark igniter to initiate combustion of injected propellants.

The reaction control engine operates under short pulse and steady-state modes.

This engine is unique in its capability to fully vaporize both the oxidizer (liquid oxygen) and fuel (liquid methane) by passing these propellants through cooling passages located in the thrust chamber wall before injecting them into the chamber for combustion. If gaseous instead of cryogenic liquid propellants are fed to the engine, the gases still provide cooling and will enter the injector at a higher temperature.

A design that ensures gas-gas injection results in consistent performance and combustion stability. Previous rocket engine designs using propellant to cool the chamber do not vaporize any of the propellant or may only vaporize one of the propellants, typically the fuel.

The ability to operate under a broad range of inlet conditions is critical for reducing the complexity and weight of cryogenic propulsion systems that perform random pulsing for attitude control. "We are pleased that in 16 months from contract award, we were able to provide NASA with this demonstration of innovative technology that addresses a critical mission need," said Tom Romesser, vice president of the Technology and Emerging Systems Division for Northrop Grumman's Space Technology sector.

The development of this new rocket engine has been performed under contract to NASA Glenn Research Center on the Cryogenic Reaction Control Engine program, awarded to Northrop Grumman in February 2006. NASA's Johnson Space Center provided technical management on the effort. Development hot-fire testing under vacuum conditions was performed at Northrop Grumman's Capistrano Test Site located in San Juan Capistrano, Calif.

Related Links
Northrop Grumman
Rocket Science News at Space-Travel.Com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Groundbreaking Signals Start Of NASA Constellation Flight Tests
Las Cruces NM (SPX) Nov 15, 2007
With less than a year until flight tests of NASA's Constellation Program, work is under way on a launch pad that will host the first of those tests. Workers broke ground on a pad where the agency will test a launch abort system for the new Orion spacecraft at the U.S. Army's White Sands Missile Range near Las Cruces, N.M.







  • Northrop Grumman Demonstrates New Rocket Engine Design Using Oxygen And Methane Propellants
  • Indigenous Cryogenic Stage Successfully Qualified
  • Groundbreaking Signals Start Of NASA Constellation Flight Tests
  • SpaceX Completes Development Of Merlin Regeneratively Cooled Rocket Engine

  • Lockheed Martin-Built Sirius 4 Launched Successfully From Baikonur Cosmodrome
  • First Soyuz Launch From Kourou Set For 2009
  • Ground Broken For New Test Launch Pad
  • Sea Launch Resumes Countdown for Thuraya-3 Launch

  • US Lawmakers Grill Space Agency On Plans For Shuttle Retirement
  • Atlantis At The Pad
  • Discovery's Return Marks Completion Of Esperia Mission
  • NASA's Space Shuttle Atlantis To Move To Launch Pad Saturday

  • Crew Moves Harmony To Front Of Space Station
  • PMA-2 Move Readies Station For Harmony Relocation
  • Russia plans more ISS modules
  • Expedition 16 Completes First Spacewalk

  • SPACEHAB Supporting Key Milestones Under NASA Space Act Agreement
  • Brazil to invest 28 bln dollars in science and technology: Lula
  • Orbital Outfitters Debuts IS3C - First-Ever Fully Functional Commercial Pressure Spacesuit
  • Europe's comet-chasing probe completes key flyby

  • China aiming to replace foreign satellites: report
  • China Completes Enclosure Of Land For Fourth Satellite Launch Center
  • China Launches New Remote Sensing Satellite
  • China launches remote sensing satellite

  • Can A Robot Find A Rock. Interview With David Wettergreen: Part IV
  • Proton Rocket To Launch Glonass Satellites Friday
  • QinetiQ Establishes Service And Support Centre For Talon Robots In Australia
  • UCSD Researchers Give Computers Common Sense

  • Mars Express Creates First Global Map Of Martian Ionosphere
  • Rover Finds Way To Brush Rock Surfaces Despite Setbacks
  • Spirit Continues Drive As Power Levels Decline
  • Opportunity's Rock Abrasion Tool Shows Anomalous Behavior

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement