Space Travel News  
Methane Spotted On Extrasolar Planet

by Staff Writers
Paris (ESA) March 19, 2008
The NASA/ESA Hubble Space Telescope has made the first detection ever of an organic molecule in the atmosphere of a planet orbiting another star. This breakthrough is an important step in eventually identifying signs of life on a planet outside our Solar System.

Hubble found the tell-tale signature of methane in the atmosphere of the Jupiter-sized extrasolar planet HD 189733b. Under the right circumstances, methane can play a key role in prebiotic chemistry � the chemical reactions considered necessary to form life as we know it. Although methane has been detected on most of the planets in our Solar System, this is the first time any organic molecule has been detected on a world orbiting another star.

This discovery proves that Hubble and upcoming space missions, such as the NASA/ESA/CSA James Webb Space Telescope, can detect organic molecules on planets around other stars using spectroscopy, which splits light into its components to reveal the fingerprints of various chemicals.

"This is a crucial stepping stone to eventually characterising prebiotic molecules on planets where life could exist", said Mark Swain of NASA's Jet Propulsion Laboratory (JPL), USA, who led the team that made the discovery. Swain is lead author of a paper to be published in tomorrow's issue of Nature.

The discovery comes after extensive observations in May 2007 carried out with Hubble's Near Infrared Camera and Multi-Object Spectrometer (NICMOS). It also confirms the existence of water molecules in the planet's atmosphere, a discovery originally made by co-author Giovanna Tinetti in 2007 while she was an ESA fellow at Institute d'Astrophysique de Paris, France, using NASA's Spitzer space telescope.

"With this observation there is no question whether there is water or not � water is present", said Swain.

The planet HD 189733b, now known to have methane and water vapour, is located 63 light-years away in the constellation Vulpecula, the little fox. HD 189733b, a hot Jupiter-type extrasolar planet, is so close to its parent star that it takes just over two days to complete an orbit.

Hot Jupiters are the size of Jupiter but orbit closer to their stars than Mercury, the innermost planet in our Solar System. HD 189733b's atmosphere swelters at 900C, about the same temperature as the melting point of silver.

The observations were made as the planet passed in front of its parent star in what astronomers call a transit. As the light from the star passed briefly through the atmosphere along the edge of the planet, the gases in the atmosphere imprinted their unique signatures on the light from the star HD 189733.

Giovanna Tinetti, now affiliated to University College added, "Water alone could not explain all the spectral features observed. The additional contribution of methane is necessary to fit the Hubble data".

Methane, composed of carbon and hydrogen, is one of the main components of natural gas, a product of petroleum. On Earth, methane is produced by a variety of sources: natural sources such as termites, the oceans and wetland environments, but also from livestock and manmade sources such as waste landfills and as a by-product of energy generation.

Tinetti is however quick to rule out any biological origin of the methane found on HD 189733b. "The planet's atmosphere is far too hot for even the hardiest life to survive - at least the kind of life we know from Earth. It's highly unlikely that cows could survive here!"

The astronomers were surprised to find that the planet has more methane than predicted by conventional models for hot Jupiters. This type of hot planet should have much more carbon monoxide than methane but HD 189733b doesn't.

Tinetti adds: "A sensible explanation is that the Hubble observations were more sensitive to the dark night-side of this planet where the atmosphere is slightly colder and the photochemical mechanisms responsible for methane destruction are less efficient than on the day-side".

Although this star-hugger is too hot for life as we know it, "this observation is proof that spectroscopy can eventually be done on a cooler and potentially habitable Earth-sized planet orbiting a dimmer red dwarf-type star", Swain said.

The ultimate goal of studies like these is to identify prebiotic molecules in the atmospheres of planets in the habitable zones around other stars, where temperatures are right for water to remain liquid rather than freeze or evaporate away.

"These measurements are an important step to our ultimate goal of determining the conditions, such as temperature, pressure, winds, clouds, etc., and the chemistry on planets where life could exist. Infrared spectroscopy is really the key to these studies because it is best matched to detecting molecules", said Swain.

Related Links
Hubble at ESA
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Spitzer Finds Organics And Water Where New Planets May Grow
Pasadena CA (JPL) Mar 16, 2008
Researchers using NASA's Spitzer Space Telescope have discovered large amounts of simple organic gases and water vapor in a possible planet-forming region around an infant star, along with evidence that these molecules were created there. They've also found water in the same zone around two other young stars.







  • European Space Truck Jules Verne In Parking Orbit
  • New Purdue Facility Aims To Improve NASA Moon Rocket Engine
  • Space X Falcon 9 Facing More Delays As Shuttle Replacement Looms
  • SpaceX Completes Qualification Testing Of Falcon 1 Merlin Regeneratively Cooled Engine

  • Cape Canaveral Airmen Launch Delta II Rocket
  • ProStar GPS Guides Players At Arizona Golf Resort
  • Pratt And Whitney Rocketdyne Rocket Engine Powers Latest GPS Satellite Into Space
  • United Launch Alliance Launches Delta 2 For US Air Force GPS Replacement Satellite

  • Space Shuttle Endeavour Docks At Space Station
  • NASA puzzles over mysterious 10-second debris
  • Endeavour prepares for ISS docking
  • Space shuttle Endeavour is launched

  • ISS astronauts take rest day after setting up giant robot
  • Dextre Flexes It's Muscles And Gets Ready To Work On The ISS
  • Astronauts assemble Canadian robot on 7-hour walk
  • Jules Verne Demonstrates Flawless Collision Avoidance Manoeuvre

  • Korea's first astronaut hopes to make peace with North
  • Sci-fi guru Clarke dies in Sri Lanka
  • First Korean astronaut 'honoured' about space mission
  • Successful Manoeuvres Position Jules Verne ATV For Crucial Tests

  • China To Use Jumbo Rocket For Delivery Of Lunar Rover, Space Station
  • China's Recoverable Moon Rover Expected In 2017
  • First China Spacewalk On Course For October
  • China To Launch Second Olympic Satellite In May

  • iRobot Receives Award For DARPA LANdroids Program
  • Coming soon to Japan: remote control with a wink
  • Japanese cellphones to turn into 'robot' buddies
  • Killer Military Robots Pose Latest Threat To Humanity

  • Salt Deposits May Have Evidence Of Life On Mars
  • Mars Express Reveals Volcanic Past Of The Red Planet
  • Women Drivers On Mars
  • HiRISE Discovers A Possibly Once-Habitable Ancient Mars Lake

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement