Space Travel News  
Healthy Coastal Wetlands Would Adapt To Rising Oceans

"If the vegetation is intact, it holds the system in place and enhances the trapping of sediments and tends to minimize the erosion," Murray said. "Up to some high level of sea-level rise, the system is going to keep itself in place because of that vegetation."
by Staff Writers
Durham NC (SPX) Mar 29, 2007
Tidal marshes, which nurture marine life and reduce storm damage along many coastlines, should be able to adjust to rising sea levels and avoid being inundated and lost, if their vegetation isn't damaged and their supplies of upstream sediment aren't reduced, a new Duke University study suggests.

Such marshes "offer great value as buffers of coastal storms in cities such as New Orleans, which is separated from the Gulf of Mexico by marshlands," Matthew Kirwan and A. Brad Murray said in a report published online on Monday, March 26, in the journal "Proceedings of the National Academy of Sciences."

The researchers built a 3-D computer model that agrees with other recent work in suggesting that marshlands have some potential for adapting to environmental change. However, the Duke modeling also suggests that substantially disturbing the wetlands' plants or starving them of sediment could disrupt that equilibrium.

These coastal systems of water-tolerant plants and tidal channels also "provide highly productive habitat and serve as nursery grounds for a large number of commercially important fin and shellfish," according to the researchers. Murray is an associate professor of geomorphology and coastal processes at Duke's Nicholas School of the Environment and Earth Sciences. Kirwan, the report's first author, is a doctoral student working with Murray.

Despite those benefits, a variety of environmental changes often linked to humans -- including sea-level rise, sinking land and alterations to sand and silt supplies that anchor the wetland plants -- are "affecting coastal marshes worldwide," the scientists said.

The research was funded by the National Science Foundation and the Andrew W. Mellon Foundation.

The team's model, which was based partly on field studies done in South Carolina, and compared with observations in Louisiana, Massachusetts and British Columbia marshlands, uses computerized mathematical equations to help researchers evaluate the evolution of marsh shapes and complex ecosystems.

Other research teams have devised similar computer exercises, but Murray said Duke's version emphasizes how biology influences and interacts with physical erosion processes.

The model describes how vegetation and sediments can meld into living "platforms" that adjust to changing water levels. It also factors in how tidal creeks and channels can both supply silt and sand to the evolving matrix or help undo that process through erosion.

"With a steady, moderate rise in sea level, the model builds a marsh platform and channel network (that rises) with the rate of sea-level rise, meaning water depths and biological productivity remain temporarily constant," said the new report.

"If the vegetation is intact, it holds the system in place and enhances the trapping of sediments and tends to minimize the erosion," Murray said. "Up to some high level of sea-level rise, the system is going to keep itself in place because of that vegetation."

But the model also shows that removing some vegetation or reducing sediment supplies will set the stage for increasing water depths, a change exacerbated as the rates of rising sea levels increase.

Those changes might set the stage for "a scary metastable state," Murray said. Under that state, "conditions would tend to revert to an open-water subtidal basin that becomes too deep for the plants to come back," he said.

"We think that could be why marshes in the Chesapeake Bay region as well as in Louisiana are tending to deteriorate," he said. "That's because those are both places with relatively high sea-level rise rates, and because of land-use changes that decrease rates of sediment delivery downstream."

Such land-use changes could include the damming of rivers and the reforestation of formerly open land.

In fact, the study suggests that heavy sediment runoff during the extensive deforestation of America's colonial period may have created the conditions that built up today's extensive -- but now possibly "metastable" -- marshlands along the East Coast.

Related Links
Duke University
Learn about Climate Science at TerraDaily.com
Climate Science News - Modeling, Mitigation Adaptation



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Republicans Move To Block Al Gore Live Earth Rock Concert
Washington (AFP) March 28, 2007
Republicans in Congress are trying to bar former vice president Al Gore's anti-global warming mega-concert from its planned venue on the steps of the US Capitol building.







  • Iowa State To Unveil The Most Realistic Virtual Reality Room In The World
  • Boeing Announces Industry Team For Ares I Crew Launch Vehicle Upper Stage Production
  • Space X Declares Falcon 1 Testing Complete And Ready For Commercial Orbital Transportation Services
  • New Launch Of Dnepr Rocket Postponed For Technical Reasons

  • ISRO To Launch Foreign Satellite As Primary Payload First Time
  • Arianespace Is Ready To Support The Mobile Satellite Services Industry's Future Development
  • Next Ariane 5 Takes Shape
  • Official Opening Of The Soyuz Launch Base Construction Site In French Guiana

  • Shuttle Assessments And Repair Work Ongoing
  • NASA Assigns Crew For Shuttle Mission To Install Japanese Lab
  • Shuttle Atlantis Grounded by Fuel Tank Damage
  • Marshall Communications And AMERICOM GOVERNMENT SERVICES Extend NASA Contract

  • Soyuz TMA-9 Module Relocation Set For March 30
  • MDA To Implement Space Station Berthing Information Solution For Japan
  • ISS Crew Work On Long-Dusration Space Flight Tests
  • Expedition 15 To ISS Approved Soyuz TMA-10 To Launch April 7

  • NASA Medical Review Team Appointed
  • New Mexico Voters Weigh Spaceport Tax Impost
  • The First Soyuz Mission Forty Years On
  • Researchers Uncover Protection Mechanism Of Radiation-Resistant Bacterium

  • China Outlines Space Program Till 2010
  • China To Launch New Direct Broadcast Satellite To Replace SinoSat-2
  • Russian Court Upholds Custody For Space Firm Chief Reshetin
  • China Unveils New Space Science Plan

  • Students Rack Up Wins At Local Robotics Competition
  • Talking Bots
  • Novel Salamander Robot Crawls Its Way Up The Evolutionary Ladder
  • Look Ma, No Hands, No Humans

  • China And Russia Plan Mars Mission
  • First Steps To Mars
  • International Partnerships Plan Continued Exploration Of Mars
  • Mechanized Explorers Study The Depths, Chemistry Of Mars

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement