Space Travel News  
Cosmic Eye Sheds Light On Early Galaxy Formation

A colour HST image of the "Cosmic Eye". The red source in the middle is the foreground lensing galaxy, whilst the blue ring is the near-complete Einstein ring image of the background star-forming galaxy.
by Staff Writers
Durham, UK (SPX) Oct 09, 2008
A Cosmic Eye has given scientists a unique insight into galaxy formation in the very early Universe.

Using gravity from a foreground galaxy as a zoom lens the team was able to see a young star-forming galaxy in the distant Universe as it appeared only two billion years after the Big Bang.

Scientists at Durham University (including Royal Astronomical Society Norman Lockyer Fellow Dr Mark Swinbank), Cardiff University and the California Institute of Technology (Caltech, USA), are behind the research, partly funded by the Royal Astronomical Society and published in the prestigious scientific journal Nature.

The researchers, led by Dr Dan Stark, of Caltech, say their findings show for the first time how the distant galaxy might evolve to become a present-day system like our Milky Way.

And they say their study also provides a taste of what astronomers will be able to see in the distant Universe once projects such as the planned European Extremely Large Telescope (E -ELT) and the American Thirty Metre Telescope (TMT) come into use.

The Cosmic Eye is so called because the foreground galaxy, which is 2. 2 billion light years from Earth, appears in the centre of an arc created by the distant galaxy - giving it the appearance of a human eye.

The distant galaxy, which lies 11 billion light years from Earth, was originally identified using the Hubble Space Telescope.

The team then used the ten metre Keck telescope, on Hawaii, which is equipped with laser -assisted guide star adaptive optics (AO) to correct for blurring in the Earth's atmosphere, to carry out their observations.

By coupling the telescope with the magnifying effect of the gravitational field of the foreground galaxy - a technique called gravitational lensing - they were able to study the distant star system.

Gravitational lensing, the distortion of light rays by massive objects as predicted by Einstein, enlarged the distant galaxy by eight times.

This allowed the scientists to determine the galaxy's internal velocity structure and compare it to later star systems such as the Milky Way.

Dr Swinbank, of The Institute for Computational Cosmology, at Durham University, said: "This is the most detailed study there has been of an early galaxy. Effectively we are looking back in time to when the Universe was in its very early stages.

"This technique of using gravitational lensing provides us with a glimpse of what we will commonly achieve when the next generation of telescopes, which are still a decade away, come on-line."

Dr Dan Stark, of Caltech, said: "Gravity has effectively provided us with an additional zoom lens, enabling us to study this distant galaxy on scales approaching only a few hundred light years.

"This is ten times finer sampling than previously. As a result for the first time we can see that a typical-sized young galaxy is spinning and slowly evolving into a spiral galaxy much like our own Milky Way."

Data from the Keck Observatory was combined with millimetre observations from the Plateau de Bure Interferometer, in the French Alps, which is sensitive to the distribution of cold gas destined to collapse to form stars.

Dr Swinbank added: "Remarkably the cold gas traced by our millimetre observations shares the rotation shown by the young stars in the Keck observations.

"The distribution of gas seen with our amazing resolution indicates we are witnessing the gradual build up of a spiral disk with a central nuclear component."

The research was funded by a variety of bodies including the RAS, the Science and Technology Facilities Council (STFC), the Royal Society, the National Science Foundation (NSF) and the Keck Foundation.

Data for the research was obtained at the WM Keck Observatory, which is operated as a scientific partnership between Caltech and NASA and from observations made with European Organisation for Astronomical Research in the Southern Hemisphere (ESO) Telescopes at the Paranal Observatory.

The scientists say the research demonstrates how important angular resolution - the angular size of the smallest detail of an astronomical object that can be distinguished with a telescope - has become in ensuring progress in extragalactic astronomy.

Projects such as the E-ELT, TMT and the Atacama Large Millimeter/submillimeter Array (ALMA), a large interferometer being completed in Chile, will aid this work.

Related Links
Institute of Computational Cosmology
Stellar Chemistry, The Universe And All Within It



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Big Galaxy Collisions Can Stunt Star Formation
Tucson AZ (SPX) Oct 08, 2008
A deep new image of the Virgo cluster has revealed monumental tendrils of ionized hydrogen gas 400,000 light-years long connecting the elliptical galaxy M86 and the disturbed spiral galaxy NGC 4438.







  • NASA And Air Force Work To Establish Hypersonic Science Centers
  • Iran To Conduct First Satellite Launch Soon
  • Outside View: Reusable rocket breakthrough
  • Grant For Eco-Friendly Rocket Engine

  • New ASTRA 1M Satellite To Be Launched On 31 October
  • Ariane 5 Is Readied For A Dual-Payload Mission
  • India To Have New Launchpad For Proposed Manned Mission
  • Arianespace Flight 186 Set For End Of November

  • Trouble on Hubble telescope delays space shuttle launch: NASA
  • Astronauts Prepare For Countdown Rehearsal
  • Shuttle Astronauts Begin Prelaunch Training Milestone
  • Endeavour's move to launch pad set

  • ISS Orbit Adjusted By Russian Progress Ship
  • Boeing Receives ISS Contract Extension
  • Europe's "space truck" heads for Pacific breakup
  • Russia's Space Agency Confirms 18th ISS Expedition

  • Apollo Heat Shield Uncrated After 35 Years, Helps New Crew Vehicle Design
  • Japan May Throw Billions At Space Elevator Project
  • Scientists working on space elevator
  • International Space Station changes orbit awaiting tourist: report

  • Chinese Scientists Start Studying Samples From Shenzhou-7
  • Analysis: China space launch raises fears
  • China Sets Sights On First Space Station
  • Emergency Rescue Vessels For Shenzhou-7 Spaceship Return

  • VIPeR Robot Demonstrates Exceptional Agility
  • iRobot Receives Order From TARDEC For iRobot Warrior 700
  • iRobot Awarded US Army Contract For Robotic Systems
  • Robots Learn To Follow

  • An Opportunity For A Tour Will Be An Endeavour
  • Nicaraguan Volcano Provides Insight Into Early Mars
  • Mars Lander Sees Falling Snow, Soil Data Suggest Liquid Past
  • Opportunity Slipping Like A Dune Buggy

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement