Space Travel News  
Cluster Reveals How The Sun Shakes Magnetic Field Of Earth

Artistic view of the influence of the solar wind on the magnetosphere to create Kelvin-Helmholtz surface waves along the magnetopause and induce magnetic field line resonance, with the Cluster satellite constellation flying across.
by Staff Writers
Paris, France (ESA) Jul 29, 2007
Space is a hostile region for both astronauts and satellites. One constituent of this hazardous environment around the Earth are very energetic electrons, which are able to perturb or permanently damage satellites. Ultra Low Frequency (ULF) waves, which travel along the Earth's magnetic field lines, are a prime candidate for generating these killer electrons, but the source of these waves remains unclear.

A recent study reveals how a rare conjunction of ground based instrumentation and a dozen satellites at a range of altitudes provide a means to trace the energy source of these waves from the solar wind into the Earth's magnetosphere down to the ground. Part of this satellite constellation, the four spacecraft of the ESA Cluster mission, was located at the border of the magnetosphere and played a major role in discriminating between the various theoretical ULF wave generation scenarios.

In 1859, the greatest geomagnetic storm ever recorded adversely affected a significant portion of the world's 200 000 km of telegraph lines for several hours, at that time the only means of effective long distance communication. Meanwhile near London (UK), some of the first ground-based magnetometers were monitoring the behaviour of the Earth's magnetic field.

Surprisingly, quasi-sinusoidal oscillations of the magnetic field lines with periods of a few minutes were recorded continuously for several hours, as if a celestial musician had plucked the magnetic field lines or strings of the Earth's magnetic guitar (see also "Earth's Magnetic Field" linked from the right-hand side navigation).

These oscillations are now believed to play a significant role in the transport of mass, energy, and momentum within the Earth's magnetosphere. Known as ultra low frequency (ULF) waves, they can effectively accelerate electrons to very high velocities. At geosynchronous altitude ( about 35 600 km), these highly energetic, so called 'killer', electrons, can inflict critical damage to telecommunications satellites and represent a hazard to astronauts. Understanding how these waves are generated is a strong focus of recent space research.

Several ways of exciting these waves have been proposed. Most of them involve the solar wind as the external driver. The solar wind is a continuous stream of solar particles impacting and shaping the Earth's magnetic environment. However, understanding the global nature of these geomagnetic pulsations and the tracing of the energy transfer from the solar wind to the ground is a difficult task. It requires a fortuitous alignment of several satellites, together with ground-based instruments, to observe the oscillations simultaneously.

A space armada and ground based instruments to track ULF waves
On 25 November 2001, such a serendipitous alignment occurred during the recovery phase of a large geomagnetic storm. A low frequency type of ULF wave, called Pc5, was continuously recorded for many hours by the CARISMA magnetometer chain in Northern Canada.

During a 3-hour subset of this interval, these Pc5 waves were picked up by more than a dozen scientific satellites, all collocated in the dusk sector at different altitudes. They included: the four ESA Cluster satellites outbound from the magnetosphere across its boundary, the magnetopause, at altitudes higher than 110 000 km, the NASA Polar spacecraft traversing the magnetosphere at about 58 000 km and four NOAA geostationary satellites at about 35 600 km; GOES-8, -9, -10 and -12.

The Polar satellite links Cluster data to Ground-Based measurements
A detailed analysis of the data, published in December 2005 in the Journal of Geophysical Research, revealed the following scenario. On 25 November 2001, the solar wind velocity was about 750 kms-1, nearly twice its average speed.

The impact of this fast flow of solar particles on the Earth's magnetosphere induced undulations of the magnetopause such as those depicted in Animation 1. As a consequence, the Cluster satellites outbound from the magnetosphere crossed the magnetopause not once but periodically, roughly every 11 minutes or at 1.5 mHz, a typical period for Pc5 waves.

The authors of this study surmise that these undulations induced compressional waves propagating inward from the magnetopause, which coupled to terrestrial magnetic field lines close to the location of Polar and several geosynchronous satellites. All these spacecraft, over a period of hours, picked up clear signatures of this magnetic Field Line Resonance (FLR) with the same period as the magnetopause flapping.

Meanwhile, ionospheric signatures of this FLR were measured by SuperDARN HF radars over a large portion of the northern hemisphere. Magnetically conjugated magnetometers of the CARISMA network were recording the ground footprint of this 1.5-1.6 mHz FLR. Taking into account all these data, the authors of this study found that these Pc5 waves result from the excitation of a magnetospheric waveguide either by the Kelvin-Helmoltz instability or via overreflection acting on the duskside magnetopause.

"This excellent conjunction of ground- and space-based instrumentation provides a means to trace energy extracted from the solar wind into the Earth's magnetosphere before ultimately being deposited into the upper atmosphere. During this event, the Polar data provided a direct link between Cluster measurements of magnetopause undulations and FLR signatures detected by SuperDARN radars and the CARISMA magnetometer network.

This is the first study to have such an advantageous instrumentation collecting data over the same time interval," comments lead author Dr. Jonathan Rae, scientist at the University of Alberta, Edmonton, Canada and lead author of this study.

"ULF waves affect the entire magnetosphere. This study underlines once again the scientific need of a constant monitoring by ground-based geophysical instruments to put data measured in space in a global context. In situ, Cluster is also revolutionizing our understanding of ULF waves by using the unique capability of its four spacecraft flying in formation, the subject of a PhD very recently defended at Royal Institute of Technology (KTH), Stockholm, Sweden, by Tommy Eriksson," says Philippe Escoubet, ESA Cluster and Double Star project scientist.

Additional Recent Results on ULF Waves
Finally a few words on a very recent result on ULF waves, found thanks to Cluster data and published 29 June 2007 in Geophysical Research Letters. Dr. Qiugang Zong and co-authors report the first direct observations of ULF-energetic particle resonance in the outer Van Allen radiation belt.

In particular, the modes of oscillations of the Pc5 waves observed are successfully related to theoretical models and the energy at which the electrons are accelerated by theses waves is quantified. "The results reported in this paper cast new lights to understand very energetic particle acceleration in the Van Allen radiation Belts - the number one space threat," says Dr. Zong, scientist at the University of Massachusetts-Lowell (USA) and at Peking University (China).

Rae, I. J., E. F. Donovan, I. R. Mann, F. R. Fenrich, C. E. J. Watt, D. K. Milling, M. Lester, B. Lavraud, J. A. Wild, H. J. Singer, H. Reme, and A. Balogh (2005), Evolution and characteristics of global Pc5 ULF waves during a high solar wind speed interval, J. Geophys. Res., 110, A12211, doi:10.1029/2005JA011007 Zong, Q.-G., X.-Z. Zhou, X. Li, P. Song, S. Y. Fu, D. N. Baker, Z. Y. Pu, T. A. Fritz, P. Daly, A. Balogh, and H. Reme (2007), Ultralow frequency modulation of energetic particles in the dayside magnetosphere, Geophys. Res. Lett., 34, L12105, doi:10.1029/2007GL029915

Related Links
Cluster at ESA
Space weather
Solar Orbiter
SOHO overview
Double Star overview
Dirt, rocks and all the stuff we stand on firmly



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Killer Electrons In Space Are Now Less Mysterious
Paris, France (ESA) Jul 30, 2007
A rare, timely conjunction of ground-based instrumentation and a dozen satellites has helped scientists better understand how electrons in space can turn into 'killers'. ESA's Cluster constellation has contributed crucially to the finding. 'Killer' electrons are highly energetic, negatively charged particles found in near-Earth space. They can critically, and even permanently, damage satellites in orbit, including telecommunication satellites, and pose a hazard to astronauts.







  • US Govt Recovers Backpay For Employees Of Colorado-Based Ball Aerospace And Tech
  • Scaled Composties Explosion Toll Rises To Three
  • Rocket Explosion Kills Two At Mojave In California
  • Astrium Wins Study For New Vega Upper Stage

  • India Plans To Double Satellite Launches Within Five Years
  • Spaceway 3 Is Delivered To The Spaceport For Its Mid-August Ariane 5 Launch
  • Russian Space Firm Signs 14 Deals For Commercial Rocket Launches
  • Sea Launch To Resume Zenit Launches In October

  • Shuttle Computer System Sabotaged, Mission Launch Not Impacted
  • Spacehab Ready For Last Mission
  • Security Scare And Drunkeness Report Hit Space Shuttle Program
  • External Tank ET-120 Headed to Kennedy Space Center

  • Name And Designer Logo Revealed For Paolo Nespoli Shuttle Mission To The ISS
  • 2006-2007 International Space Station Science: Looking Back and Ahead...
  • ISS Orbit Adjusted To Host Shuttle Endeavor
  • Station Crew Completes Successful Spacewalk

  • NASA Faces Congress Scrutiny As Russia Denies US Astronauts Had Chance To Booze
  • Raytheon Launches Virtual Summer Camp For Kids
  • NASA Jolted By Boozing Astronauts And Sabotage
  • Udall Urges Conrad To Question Nussle On NASA Funding

  • Chinese Astronauts Begin Training For Spacewalk
  • China Prepares To Select New Taikonauts
  • Dongfanghong 4 Ready For More International Satellite Orders
  • China To Launch Third Sino-Brazilian Satellite In September

  • Robotic Ankle For Amputees Is Developed
  • iRobot Receives New Military Orders 14 PackBot Robots
  • New Japanese Humanoid Invites Grown-Ups To Play
  • Robots Incorporated

  • Spirit Sees Dustier Sky
  • Mars Winds Could Pose Stiff Challenge For NASA's Phoenix Lander Team
  • Europe Asks Thales Alenia Space For The Price Of A Mars Robotic Rover
  • Search For Life In Martian Ice Relies On UK Technology

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement