Space Travel News  
Cluster New Insights Into The Electric Circuits Of Polar Lights

File photo of an Aurora over Finland.
by Staff Writers
Stockholm, Sweden (SPX) Feb 12, 2007
Giant electrical circuits power the magical open-air light show of the auroras, forming arcs in high-latitude regions like Scandinavia. New results obtained thanks to ESA's Cluster satellites provide a new insight into the source of the difference between the two types of electrical circuits currently known to be associated to the auroral arcs.

The deep mechanisms that rule the creation of the beautiful auroras, or polar lights, have been the subject of studies that are keeping solar and plasma scientists busy since years. While early rockets and ground-observations have already provided a few important clues for the understanding of these phenomena, the real break-throughs in our knowledge have started with dedicated auroral satellites, such as S3-3, Dynamics Explorer, Viking, Freja and FAST, and have now come to full fruition with ESA's multi-point mission Cluster.

The basic process generating auroras is similar to what happens in an old TV tube. In the TV tube, accelerated electrons hit the screen and make its phosphore glow; electrons in the atmosphere get accelerated in an 'acceleration region' situated between about 5000 and 8000 kilometres altitude, and rush down to the Earth's ionosphere - a region of the upper atmosphere. Here, they crash into ionospheric atoms and molecules, transfer to them some of their energy and so cause them to glow, creating aurorae.

It is today well established that almost-static electric fields, parallel to the Earth's magnetic fields, play an important role in the acceleration of the electrons that cause the auroras to shine. The auroral electric circuits in the near-Earth space involve almost-static 'electric potential' structures through which electrons and ions are accelerated in opposite directions - towards and away from Earth's atmosphere -at high latitudes.

It had been observed that these electric potential structures are mainly of two types - symmetric (U-shaped) or asymmetric (S-shaped). In 2004, Prof. Goran Marklund from the Alfven Laboratory, at the Royal Institute of Technology, Stockholm (Sweden), noted that the U-shaped and the S-shaped structures typically occurred at the boundaries between magnetospheric regions with different properties.

The former type (U-shaped) was found at a plasma boundary between the so-called 'central plasma sheet', situated in the magnetotail at equatorial latitudes, and the 'plasma sheet boundary layer', an adjacent area located at higher latitudes. The latter type (S-shaped) was found at the boundary between the 'plasma sheet boundary layer' and the polar cap, further up in latitude.

Marklund was then in the condition to propose a model to explain this difference. The model suggested that both the asymmetric and symmetric shape of the potential structures, observed at the different plasma boundaries, depended on the specific conditions of the plasma (such as differences in plasma density) in the two regions surrounding the boundary. According to the 2001 observations, he concluded that the plasma conditions at the lower-latitude boundary (where U-shaped structures were observed) are in general more symmetric, while the ones at the polar cap boundary (where the S-shaped structures were observed) are more asymmetric.

However, new Cluster measurements did not seem to be consistent with this picture. On 1 May 2003, one of the Cluster spacecraft crossed the auroral arc at high altitude in the Earth's magnetotail. As expected, it detected the presence of a U-shaped, symmetric potential structure when crossing the boundary between the 'central plasma sheet' and the 'plasma sheet boundary layer'.

Only 16 minutes later a second Cluster spacecraft, moving roughly along the same orbit and crossing the same boundary, detected an asymmetric, S-shaped potential structure, 'typical' of the polar cap boundary and therefore unexpected in that region.

However, within the 16-minute time frame between the crossing of the two spacecraft, the plasma density and the associated currents and fluxes of particles decreased significantly in the plasma sheet boundary layer. In this way this boundary ended up in resmbling the asymmetric conditions typical of the polar cap boundary.

So, the scientists interpreted that the 'reconfiguration' from a U-shaped to a S-shaped potential structure, and of the associated electric circuits that sustain the auroral arcs, reveal the change in the plasma conditions on the two sides of the boundary.

The results represent a major step forward in understanding the auroral electrical circuits, but important questions still remain open, such as: how do the process that accelerate the electrons to form auroras get triggered and maintained? Cluster measurements in the 'acceleration' area to be performed in 2008 and 2009 should help us to find out.

The results, by Marklund et al., were published in the 13 January 2007 issue of the Journal of Geophysical Research.

Related Links
Double Star at ESA
Cluster at ESA
Solar Science News at SpaceDaily
Solar Science News at SpaceDaily



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Northern Lights Research Enters Final Frontier
Calgary, Canada (SPX) Jan 30, 2007
An international team of scientists -- including physicists from the University of Calgary -- will begin gathering the most detailed information yet about the ever-changing northern lights, as a multi-year research project enters its ultimate phase with the launch of five NASA satellites from Cape Canaveral next month.







  • New Space Technology Provides Less Shake Rattle And Roll
  • DemoFlight 2 Launch Update
  • SpaceDev Conducts Hot-Fire Test Of Hybrid Upper Stage Rocket Motor
  • Lockheed Martin Readies For Orion Crew Exploration Vehicle At Kennedy Space Center

  • Six Aurora-Research Rockets To Launch From Poker Flat
  • Sea Launch Zenit Explodes On Pad
  • Sea Launch Operations To Be Resumed Despite Liftoff Failure
  • SpaceWorks Engineering Releases Study On Emerging Commercial Transport Services To ISS

  • NASA's Shuttle Atlantis Rolls to Vehicle Assembly Building
  • Shuttle Atlantis Processing Picks Up The Pace
  • Space Shuttle Launch Rescheduled

  • Two US Astronauts Finish Third Spacewalk Outside ISS
  • ISS Crew Conduct Back To Back Spacewalks Over Several Days
  • Activity Filled Schedule Keeps Astronauts Busy On Space Station
  • Astronauts For Shuttle Japanese Experiment Module Kibo Mission Assigned

  • Astronauts' Image Falls Back To Earth In Love Triangle Case
  • US Astronaut Charged With Attempted Murder Of Love Rival
  • NASA To Review Screening Process Amid Love-Triangle Case
  • Moonstruck Astronaut Returns Home After Murder Attempt Charge

  • China, US Have No Space Cooperation
  • China To Build Fourth Satellite Launching Center In Hainan
  • Baker's Dozen Via For Chinese Lunar Rover Design
  • China Holds Firm On Space Test As US Reviews Options

  • Robotic Exoskeleton Replaces Muscle Work
  • Robotic Arm Aids Stroke Victims
  • Scientists Study Adhesive Capabilities Of Geckos To Develop Surveillance Or Inspection Robots
  • Japanese Women To Try Lipstick With Touch Of Button

  • Spring Comes To Spirit At Gusev
  • Mars Reconnaissance Orbiter CCDs On The Blink
  • Detailing A Winter Haven On Mars At Gusev Crater
  • Opportunity Passes Ten Kilometer Mark

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement