Space Travel News  
Bee Strategy Helps Servers Run More Sweetly

Honeybees maximize efficiency with dance communication.
by Staff Writers
Atlanta GA (SPX) Nov 20, 2007
Honeybees somehow manage to efficiently collect a lot of nectar with limited resources and no central command - after all, the queen bee is too busy laying eggs to oversee something as mundane as where the best nectar can be found on any given morning. According to new research from the Georgia Institute of Technology, the swarm intelligence of these amazingly organized bees can also be used to improve the efficiency of Internet servers faced with similar challenges.

A bee dance-inspired communications system developed by Georgia Tech helps Internet servers that would normally be devoted solely to one task move between tasks as needed, reducing the chances that a Web site could be overwhelmed with requests and lock out potential users and customers. Compared with the way server banks are commonly run, the honeybee method typically improves service by 4 percent to 25 percent in tests based on real Internet traffic. The research was published in the journal Bioinspiration and Biomimetics.

After studying the efficiency of honeybees, Craig Tovey, a professor in the H. Milton Stewart School of Industrial and Systems Engineering at Georgia Tech, realized through conversations with Sunil Nakrani, a computer science colleague visiting from the University of Oxford, that bees and servers had strikingly similar barriers to efficiency.

"I studied bees for years, waiting for the right application," Tovey said. "When you work with biomimetics (the study of how biological principles can be applied to design and engineering), you have to look for a close analogy between two systems - never a superficial one. And this definitely fit the bill."

The more Tovey and Nakrani discussed bees and servers, the surer they became that somehow the bees' strategies for allocating limited resources in an unpredictable and constantly changing environment could be applied to Internet servers.

Honeybees have a limited number of workers at any given time to fly out to flowers, collect nectar, return to the hive and repeat until the nectar source is depleted. Sometimes, there's an abundance of nectar to be collected; at other times nectar is scarce. The bees' environment is constantly changing - some flower patches occasionally yield much better nectar than others, the seasons shift and rainy days make nectar collection difficult. So how do the bees manage to keep a steady flow of nectar coming into the hive?

Internet servers, which provide the computing power necessary to run Web sites, typically have a set number of servers devoted to a certain Web site or client. When users access a Web site, the servers provide computing power until all the requests to access and use the site have been fulfilled. Sometimes there are a lot of requests to access a site (for instance, a clothing company's retail site after a particularly effective television ad during a popular sporting event) and sometimes there are very few.

Predicting demand for Web sites, including whether a user will access a video clip or initiate a purchase, is extremely difficult in a fickle Internet landscape, and servers are frequently overloaded and later become completely inactive at random.

Bees tackle their resource allocation problem (i.e. a limited number of bees and unpredictable demand on their time and desired location) with a seamless system driven by "dances." Here's how it works: The scout bees leave the hive in search of nectar. Once they've found a promising spot, they return to the hive "dance floor" and perform a dance. The direction of the dance tells the waiting forager bees which direction to fly, the number of waggle turns conveys the distance to the flower patch; and the length conveys the sweetness of the nectar.

The forager bees then dance behind the scouts until they learn the right steps (and the particulars about the nectar), forming a bobbing conga line of sorts. Then they fly out to collect the nectar detailed in the dance. As long as there's still nectar to be found, the bees that return continue the dance. Other forager bees continue to fly toward the source until the dancing slowly tapers off or a new bee returns with a more appealing dance routine (Hey, the nectar over here is even better!).

While all that dancing may not sound like a model of efficiency, it's actually optimal for the unpredictable nectar world the bees inhabit, Tovey said. The system allows the bees to seamlessly shift from one nectar source to a more promising nectar source based on up-to-the-minute conditions. All this without a clear leader or central command to slow the decision making process.

"But the bees aren't performing a computation or strategy, they ARE the computation," Tovey added.

Internet servers, on the other hand, are theoretically optimized for "normal" conditions, which are frequently challenged by fickle human nature. By assigning certain servers to a certain Web site, Internet hosts are establishing a system that works well under normal conditions and poorly under conditions that strain demand. When demand for one site swells, many servers sit idly by as the assigned servers reach capacity and begin shifting potential users to a lengthening queue that tries their patience and turns away potential customers.

Tovey and Nakrani set to work translating the bee strategy for these idle Internet servers. They developed a virtual "dance floor" for a network of servers. When one server receives a user request for a certain Web site, an internal advertisement (standing in a little less colorfully for the dance) is placed on the dance floor to attract any available servers. The ad's duration depends on the demand on the site and how much revenue its users may generate. The longer an ad remains on the dance floor, the more power available servers devote to serving the Web site requests advertised.

Related Links
H. Milton Stewart School of Industrial and Systems Engineering
Satellite-based Internet technologies



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Electricity Grid Could Become A Type Of Internet
Amsterdam, Netherlands (SPX) Oct 25, 2007
In the future everyone who is connected to the electricity grid will be able to upload and download packages of electricity to and from this network. At least, that is one of the transformations the electricity grid could undergo. Dutch researcher Jos Meeuwsen (Technical University Eindhoven) developed three scenarios for the Dutch electricity supply in the year 2050. The starting point is that in this year, 50% of the consumption will originate from sustainable sources.







  • Northrop Grumman Demonstrates New Rocket Engine Design Using Oxygen And Methane Propellants
  • Indigenous Cryogenic Stage Successfully Qualified
  • Groundbreaking Signals Start Of NASA Constellation Flight Tests
  • SpaceX Completes Development Of Merlin Regeneratively Cooled Rocket Engine

  • Lockheed Martin-Built Sirius 4 Launched Successfully From Baikonur Cosmodrome
  • First Soyuz Launch From Kourou Set For 2009
  • Ground Broken For New Test Launch Pad
  • Sea Launch Resumes Countdown for Thuraya-3 Launch

  • US Lawmakers Grill Space Agency On Plans For Shuttle Retirement
  • Atlantis At The Pad
  • Discovery's Return Marks Completion Of Esperia Mission
  • NASA's Space Shuttle Atlantis To Move To Launch Pad Saturday

  • Crew Moves Harmony To Front Of Space Station
  • PMA-2 Move Readies Station For Harmony Relocation
  • Russia plans more ISS modules
  • Expedition 16 Completes First Spacewalk

  • SPACEHAB Supporting Key Milestones Under NASA Space Act Agreement
  • Brazil to invest 28 bln dollars in science and technology: Lula
  • Orbital Outfitters Debuts IS3C - First-Ever Fully Functional Commercial Pressure Spacesuit
  • Europe's comet-chasing probe completes key flyby

  • China aiming to replace foreign satellites: report
  • China Completes Enclosure Of Land For Fourth Satellite Launch Center
  • China Launches New Remote Sensing Satellite
  • China launches remote sensing satellite

  • Can A Robot Find A Rock. Interview With David Wettergreen: Part IV
  • Proton Rocket To Launch Glonass Satellites Friday
  • QinetiQ Establishes Service And Support Centre For Talon Robots In Australia
  • UCSD Researchers Give Computers Common Sense

  • Mars Express Creates First Global Map Of Martian Ionosphere
  • Rover Finds Way To Brush Rock Surfaces Despite Setbacks
  • Spirit Continues Drive As Power Levels Decline
  • Opportunity's Rock Abrasion Tool Shows Anomalous Behavior

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement