Subscribe free to our newsletters via your
. Space Travel News .




ABOUT US
Your brain digitally remastered for clarity of thought
by Staff Writers
Blacksburg VA (SPX) Sep 25, 2013


Stephen LaConte, an assistant professor at the Virginia Tech Carilion Research Institute, says brain-computer interfaces now enable us to eavesdrop on previously undetectable mental activities. Credit: Virginia Tech.

The sweep of a needle across the grooves of a worn vinyl record carries distinct sounds: hisses, scratches, even the echo of skips. For many years, though, those yearning to hear Frank Sinatra sing "Fly Me to the Moon" have been able to listen to his light baritone with technical clarity, courtesy of the increased signal-to-noise ratio of digital remasterings.

Now, with advances in neurofeedback techniques, the signal-to-noise ratio of the brain activity underlying our thoughts can be remastered as well, according to a recent discovery in the Proceedings of the National Academy of Sciences by a research team led by Stephen LaConte, an assistant professor at the Virginia Tech Carilion Research Institute.

LaConte and his colleagues specialize in real-time functional magnetic resonance imaging, a relatively new technology that can convert thought into action by transferring noninvasive measurements of human brain activity into control signals that drive physical devices and computer displays in real time. Crucially, for the ultimate goal of treating disorders of the brain, this rudimentary form of mind reading enables neurofeedback.

"Our brains control overt actions that allow us to interact directly with our environments, whether by swinging an arm or singing an aria," LaConte said. "Covert mental activities, on the other hand - such as visual imagery, inner language, or recollections of the past - can't be observed by others and don't necessarily translate into action in the outside world."

But, LaConte added, brain-computer interfaces now enable us to eavesdrop on previously undetectable mental activities.

In the recent study, the scientists used whole-brain, classifier-based real-time functional magnetic resonance imaging to understand the neural underpinnings of brain-computer interface control.

The research team asked two dozen subjects to control a visual interface by silently counting numbers at fast and slow rates. For half the tasks, the subjects were told to use their thoughts to control the movement of the needle on the device they were observing; for the other tasks, they simply watched the needle.

The scientists discovered a feedback effect that LaConte said he had long suspected existed but had found elusive: the subjects who were in control of the needle achieved a better whole-brain signal-to-noise ratio than those who simply watched the needle move.

"When the subjects were performing the counting task without feedback, they did a pretty good job," LaConte said.

"But when they were doing it with feedback, we saw increases in the signal-to-noise ratio of the entire brain. This improved clarity could mean that the signal was sharpening, the noise was dropping, or both. I suspect the brain was becoming less noisy, allowing the subject to concentrate on the task at hand."

The scientists also found that the act of controlling the computer-brain interface led to an increased classification accuracy, which corresponded with improvements in the whole-brain signal-to-noise ratio.

This enhanced signal-to-noise ratio, LaConte added, carries implications for brain rehabilitation.

"When people undergoing real-time brain scans get feedback on their own brain activity patterns, they can devise ways to exert greater control of their mental processes," LaConte said.

"This, in turn, gives them the opportunity to aid in their own healing. Ultimately, we want to use this effect to find better ways to treat brain injuries and psychiatric and neurological disorders."

"Dr. LaConte's discovery represents a milestone in the development of noninvasive brain imaging approaches with potential for neurorehabilitation," said Michael Friedlander, executive director of the Virginia Tech Carilion Research Institute and a neuroscientist who specializes in brain plasticity.

"This research carries implications for people whose brains have been damaged, such as through traumatic injury or stroke, in ways that affect the motor system-how they walk, move an arm, or speak, for example.

Dr. LaConte's innovations with real-time functional brain imaging are helping to set the stage for the future, for capturing covert brain activity and creating better computer interfaces that can help people retrain their own brains."

.


Related Links
Virginia Tech Carilion Research Institute.
All About Human Beings and How We Got To Be Here






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ABOUT US
Findings in Middle East suggest early human routes into Europe
London (UPI) Sep 13, 2013
Scientists say they've found evidence of when the earliest fully modern humans arrived in the Near East, the region known today as the Middle East. Radiocarbon dates of marine shell beads found at an archaeological site in Lebanon allowed them to calculate the oldest human fossil from the same sequence of archaeological layers is 42,400 to 41,700 years old, researchers at Oxford Univers ... read more


ABOUT US
Arianespace and Astrium sign deal to begin production of 18 new Ariane 5 vehicles

Problems with Proton booster fixed

Decontamination continues at Baikonur after Proton abortive launc

Russia launches three communication satellites

ABOUT US
NASA Rover Inspects Pebbly Rocks at Martian Waypoint

Martian Life: Good or Bad?

Communications Tests Go the Distance for MAVEN

Curiosity Rover Detects No Methane On Mars

ABOUT US
Mission to moon will boost research and awareness

Mighty Eagle Improves Autonomous Landing Software With Successful Flight

Watch Out for the Harvest Moon

Chang'e-3 lunar probe sent to launch site

ABOUT US
New Horizons - Late in Cruise, and a Binary Ahoy

Pluto Science Conference Exceeds Expectations

SciTechTalk: Grab your erasers, there are more moons than we thought

NASA Hubble Finds New Neptune Moon

ABOUT US
ESA selects SSTL to design Exoplanet satellite mission

Coldest Brown Dwarfs Blur Lines between Stars and Planets

NASA-funded Program Helps Amateur Astronomers Detect Alien Worlds

Observations strongly suggest distant super-Earth has water atmosphere

ABOUT US
XCOR And ULA Complete Critical Milestone In Liquid Hydrogen Engine Program

Boeing and Aerojet Rocketdyne Test CST-100 Thrusters

NEXT Provides Lasting Propulsion and High Speeds for Deep Space Missions

Wind Tunnel Testing Used to Ensure SLS Will 'Breeze' Through Liftoff

ABOUT US
Chinese VP stresses peaceful use of space

China's space station to open for foreign peers

Last Days for Tiangong

China civilian technology satellites put into use

ABOUT US
Amateur Astronomers See Comet ISON

NASA Highlights Asteroid Grand Challenge at World Maker Faire

Take a Virtual, High-Resolution Tour of Vesta

Team Attempts To Restore Communications With Deep Impact




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement