![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers York, UK (SPX) Jul 07, 2016
Starbons, made from waste biomass including food peelings and seaweed, were discovered and first reported 10 years ago by the York Green Chemistry Centre of Excellence. Using these renewable materials provides a greener, more efficient and selective approach than other commercial systems of reducing emissions. Current widespread methods of carbon capture, such as amine treating, use liquid solutions for the treatment of emissions from chemical plants and refineries. However, these are expensive to run and require a lot of input energy compared with a relatively low output. The synthetic make-up of Starbons, which contains pores, results in the absorption of up to 65 percent more CO2 than other methods. Starbons are also more selective in capturing CO2 when mixed with nitrogen, with results showing a capture rate of 20:1 rather than 5:1 - four times more selective than other methods. The materials also retain their CO2 absorption and selectivity in the presence of water, and have extremely fast rates of CO2 absorption and desorption. Such enhanced properties for carbon capture, in a material that is sustainable and low-cost to make, holds significant potential for helping to reduce emissions from many manufacturing plants and power stations in the UK and around the world. Professor Michael North, Professor of Green Chemistry at the University of York, said: "This work is of fundamental importance in overturning established wisdom associated with gas capture by solids. It defies current accepted scientific understanding of the efficiency of carbon-capturing CO2, and has the potential to be of significant commercial and governmental value in helping the UK meet its CO2 emissions reduction promises. Professor James Clark, Head of York's Green Chemistry Centre of Excellence, said: "The high CO2 adsorption, high selectivity, rapid kinetics and water tolerance, combined with the low cost and ease of large scale production from waste biomass, gives Starbons great potential. We hope to offer the product as a commercial capture agent for separating CO2 from chemical or power station waste streams." The research is published in leading chemistry journal, Angewandte Chemie.
Related Links University of York Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |