Space Travel News  
SPACE SCOPES
XMM-Newton Technology On New Telescopes

ALMA on the Chajnantor plateau in the Chilean Atacama desert. When ALMA is completed in 2012 its amazing giant array of 66 high-precision antennas will make it the biggest radio telescope on Earth. The antennas can be moved across the desert plateau over distances from 150 m to 16 km, giving ALMA a powerful variable 'zoom'. Credits: ESA
by Staff Writers
Paris, France (ESA) Feb 07, 2011
Astronomers gazing deep into the night sky to uncover the Universe's secrets will soon be able to discover even more star-births and planets thanks to new telescopes being built in Chile and Mexico drawing on space technology.

Leading-edge production technology, developed by Italian company Media Lario Technologies for the extraordinary X-ray telescope on ESA's XMM-Newton spaceborne observatory, will be used for both the world's biggest radio telescope, the Atacama Large Millimeter Array Project (ALMA) in Chile, and the large single-dish Large Millimeter Telescope in Mexico.

"Two of the key requests for ALMA were the precision of the panels and the need not to perform any special maintenance of the panels during the life of the telescope," explained Michele Suita, ALMA Programme Manager at Thales Alenia Space Italia. Accuracy better than the width of a human hair

To provide ALMA's high accuracy and performance, all of the 3000 reflector panels forming the 25 antennas 12 m across that are Europe's contribution to the giant 66-antenna array are being built using the same precise electroforming technology used for XMM-Newton.

The surface must not deviate by more than 25 microns from the ideal shape and by only eight microns for each of the 120 single panels that form each antenna. A human hair is at least 17 microns thick.

"The panels developed by Media Lario Technologies were the only ones to fit the bill," added Mr Suita. Media Lario is producing the panels under prime contractor Thales Alenia Space Italia.

To meet ALMA's stringent requirements, studies were performed under ESA's Technology Transfer Programme, with technical support from the European Southern Observatory.

Radio astronomy found evidence for Big Bang
Radio astronomy is similar to optical astronomy but uses radio frequencies instead of visible light to detect astronomical objects. Beginning in the 1930s, radio astronomy has found many new stars and galaxies, as well as new objects such as quasars, pulsars and masers. The compelling evidence for the Big Bang theory was provided by radio astronomy.

When ALMA is completed in 2012 its amazing giant array of 66 high-precision antennas will make it the biggest radio telescope on Earth. It will help scientists to study stars, planetary systems and galaxies, and provide insight into star births when the Universe was young.

Media Lario's electroforming production technology was also selected for the 50 m-diameter single dish of the impressive Large Millimeter Telescope now under construction on the summit of the Sierra Negra, at an altitude of 4600 m in Mexico. Space spurs leading-edge technology developments

The electroforming replication technology developed to produce the exceptional mirrors for XMM-Newton, has led to breakthrough technological advances in several non-space fields. The same space production technology is being used to make smaller, faster and cheaper microchips.

When selected by ESA to produce the mirrors for the XMM-Newton, Media Lario were already known for their ability to realise highly accurate electroformed mirror assemblies. Following the delivery of the mirrors and the stunning X-ray images of our Universe from the space telescope, Media Lario's replication technology has been recognised worldwide.

"The replica technique is extremely interesting when identical highly accurate panels or mirrors are to be produced, such as those required for large-diameter and highly accurate antennas and telescopes," explained Giovanni Nocerino, Media Lario Technologies President and CEO.

"A circular symmetric main reflector can be realised by a set of rings with a number of identical panels in each ring. The advantage is even greater when many equal antennas are needed, as in the case of ALMA."

"The key aspects of the ESO-ALMA antenna are the innovative design and technologies applied for the production of the different subsystems to achieve the state-of-the-art requirement of the project," explained Stefano Stanghellini, ESO ALMA Antenna Project Manager.

"The panels produced by Media Lario Technologies are an additional new design feature of the European contribution to the ALMA array."

"We have installed, recently, the first six antennas with our prime contractor Thales Alenia Space Italia in Chile, of which the first two will go through acceptance testing until February 2011. The rest of the antennas will then be installed in the course of 2011 and 2012," added Dr Nocerino.



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
XMM-Newton
Space Telescope News and Technology at Skynightly.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


SPACE SCOPES
German Receiver GREAT Installed On SOFIA For The First Time
Bonn, Germany (SPX) Feb 04, 2011
On 21 and 22 January 2011, the German Receiver for Astronomy at Terahertz Frequencies, GREAT, was installed on Stratospheric Observatory For Infrared Astronomy, SOFIA, for the first time. The installation and first tests were successful. Further tests will follow before the first scientific flight of SOFIA with GREAT on board takes place in April 2011. "Thanks to all those who partic ... read more







SPACE SCOPES
Vandenberg Launches Minotaur One

ISRO Awaits Data On GSLV Failure

BrahMos Aerospace To Make Cryogenic Engines For Indian Rockets

Activities At Esrange Space Center 2011

SPACE SCOPES
Tool Makes Search For Martian Life Easier

Northern Mars Landscape Actively Changing

Mars Express Puts Craters On A Pedestal

Martian Sand Dunes Re-Sculpted Regularly

SPACE SCOPES
Astrobotic Technology Annouces Lunar Mission On SpaceX Falcon 9

LRO Could Have Given Apollo 14 Crew Another Majestic View

NASA's New Lander Prototype Skates Through Integration And Testing

Draper Commits One Million Dollars To Next Giant Leap's Moon Lander

SPACE SCOPES
Launch Plus Five Years: A Ways Traveled, A Ways To Go

Mission To Pluto And Beyond Marks 10 Years Since Project Inception

SPACE SCOPES
NASA Finds Earth-Size Planet Candidates In Habitable Zone

Las Cumbres Scientists Play Key Role In New Planetry System Discovery

A Six-Planet System

Earth-Size Planet Candidates Found In Habitable Zone

SPACE SCOPES
Opening Up The X-37B

No Major Flaw In Failed GSLV-F06

Euro-US partners eye 'low-cost' space launcher: report

US to regulate rocket fuel chemical in water

SPACE SCOPES
U.S. wary of China space weapons

Slow progress in U.S.-China space efforts

China Builds Theme Park In Spaceport

Tiangong Space Station Plans Progessing

SPACE SCOPES
Stardust Celebrates Twelve Years With Rocket Burn

Asteroid Busting

NASA's NEOWISE Completes Scan For Asteroids And Comets

NASA Stardust Adjusts Flight Path For Comet Meetup


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement