Space Travel News  
SOLAR DAILY
Why modified carbon nanotubes can help the reproducibility problem
by Staff Writers
Tokyo, Japan (SPX) Oct 19, 2019

The initial power conversion efficiency (PCE) soared after long-term storage because of the self-recrystallization process that perovskite undergoes when stored in the dark. Much higher conductivity and lower resistance was observed for perovskite covered with carbon nanotubes (CNTs) with oxygen-containing functional groups.

Our search for sustainable energy generation technology has led researchers to investigate various materials and their combinations in many types of devices. One such synthetic material is called "perovskite", which is low-cost and easy to produce, and can be used in solar cells.

Perovskite solar cells have attracted much attention because their power conversion efficiency (that is, their efficiency at turning sunlight into electricity) has seen dramatic improvements in recent years. However, it has proven difficult to implement them for large-scale energy generation because of a handful of issues.

One problem that perovskite solar cells face is reproducibility. This means that it is hard to consistently create perovskite crystal layers free of defects and holes, which means that deviations from design values are always likely to occur, which reduce their efficiency. On the bright side, researchers have found that the efficiency of these cells can be boosted by combining perovskite with carbon nanotubes (CNTs).

The mechanism by which CNTs and perovskite bond together and how this affects the performance of CNT perovskite solar cells has not been studied in depth. In particular, the ability of pure CNTs to bond to perovskite is not very good, and this could compromise the structural and conducting properties at the interface of both materials.

Hence, a team from Tokyo Tech lead by Prof. Keiko Waki conducted a series of experiments on perovskite solar cells combined with different types of CNTs in an attempt to both improve their performance and stability and understand the underlying mechanisms. They used not just pure CNTs, but also CNTs that bore "oxygen-containing functional groups" in their structure, which have been known to strengthen the interaction between the CNTs and perovskite, resulting in better interfaces and enhancing the crystallization of perovskite.

This research consisted of several experiments that provided insight into many aspects of CNT-perovskite interactions. First, they demonstrated the superior electrical performance of cells with functionalized CNTs over those with pure CNTs and found evidence supporting that larger crystals and fewer surface defects occur when using functionalized CNTs.

Then, the team inferred that the perovskite in the cells would undergo a recrystallization process if stored in the dark, and that the presence of the functional groups in CNT would have a significant effect on this process.

This was confirmed by storing the cells for over two months and measuring their electrical characteristics afterwards (Fig.

1). "We have discovered the self-recrystallization ability of perovskite at room temperature, whose morphology greatly improved after long-term storage. However, the most interesting result was the ability of functionalized CNTs to make use of the self-recrystallization nature to form a stronger junction between the perovskite and CNTs through the reconstruction" explains Prof. Waki.

Most notably, the functionalized CNTs improved the contact between the two materials greatly and the functional groups served as a protection against attacks from moisture on the perovskite, allowing the self-recrystallization and interface reconstruction to proceed without noticeable degradation.

The research team also found that the recrystallization process could be immensely sped up by constantly subjecting the solar cells to frequent measurements, but this ultimately affected their stability and degraded them.

Such in-depth studies on perovskite solar cells and ways to enhance them are very valuable because they get us closer to new sources of clean energy. "We hope this study contributes toward the production of perovskites with higher stability and reproducibility," concludes Prof. Waki. These findings will serve as another stepping stone so that we may one see perovskite solar cells as a key technology to preserve our planet.

Research paper


Related Links
Tokyo Institute of Technology
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Reducing open-circuit voltage loss in organic solar cells
Tokyo, Japan (SPX) Oct 17, 2019
The power conversion efficiencies of organic solar cells (OSCs) based on blends of electron donor (D) and acceptor (A) semiconducting materials now exceed 16%. However, it is still lower than that of highly efficient inorganic SCs such as GaAs. The charge generation efficiency in OSCs nowadays is nearly 100%, thus reducing the energy loss in output voltage is critically important for further enhancing the efficiency of organic solar cells. Group of Assistant Professor Seiichiro Izawa and Professor ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
SOLAR DAILY
Global analysis of submarine canyons may shed light on Martian landscapes

River relic spied by Mars Express

Curiosity findings suggest Mars once featured dozens of shallow briny ponds

NASA's Mars 2020 rover tests descent-stage separation

SOLAR DAILY
Spacebit aims to land first UK rover on the Moon

Study suggests ice on lunar south pole may have more than one source

NASA seeks industry input on hardware production for lunar spacesuit

Artemis, meet ARTEMIS: Pursuing Sun Science at the Moon

SOLAR DAILY
NASA's Juno prepares to jump Jupiter's shadow

Huge Volcano on Jupiter's Moon Io Erupts on Regular Schedule

Stony-iron meteoroid caused August impact flash at Jupiter

Storms on Jupiter are disturbing the planet's colorful belts

SOLAR DAILY
Using AI to determine exoplanet sizes

Scientists find microbial remains in ancient rocks

Liquifying a rocky exoplanet

Scientists observe formation of individual viruses, a first

SOLAR DAILY
Space and Missile Systems Center completes summer launch campaign; with small launchers next focus

NASA, SpaceX present united front on human spaceflight

NASA and SpaceX hope for manned mission to ISS in early 2020

Sea Launch platform stripped of foreign equipment, ready to leave US for Russia

SOLAR DAILY
China's KZ-1A rocket launches two satellites

China's newly launched communication satellite suffers abnormality

China launches first private rocket capable of carrying satellites

Chinese scientists say goodbye to Tiangong-2

SOLAR DAILY
Interstellar comet with a familiar look

Scientist helps discover how water is regenerated on asteroids

Draconid meteor shower to light up the skies

Characterizing near-earth objects to understand impact risks, exploration potential









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.