![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Paris, France (SPX) Mar 14, 2018
During the nighttime, it is hotter in the city than in nearby suburbs or the countryside. But just how much hotter differs between cities. Researchers from the CNRS and MIT joint research laboratory and the Centre Interdisciplinaire des Nanosciences de Marseille have shown that the determining factor is how cities are structured: more organized cities, like many in North America with straight and perpendicular streets, trap more heat. Conversely, cities that are less organized, like those founded long ago, shed heat easily. The team's findings, published in Physical Review Letters (March 9, 2018), suggest new directions to explore for optimal urban planning and energy management. Urban heat islands (UHIs) are created when the air temperature rises higher in cities than in the surrounding suburbs and rural areas. In the US, this phenomenon affects 80% of the urban population. In populated areas, UHIs can lead to greater energy consumption (to power air conditioning, for example), more air pollution, a lower quality of life, and poorer health. Some cities have applied strategies to limit UHIs - including the addition of more green spaces - but the environmental and economic impact of heat islands, at a national or even regional scale, has still barely been quantified. The researchers in this study considered major factors governing rises in temperature, such as the thermal mass of buildings and the extent to which, at night, they radiate heat absorbed during the day. To do so, they looked at temperatures recorded in urban and rural areas over several years as well as at data on building footprints, combined with a heat radiation model. For the fifty-some cities they studied - among them, New York, Chicago, and Boston - this method made it possible to demonstrate that the effects of nighttime UHIs vary according to urban geometry. Buildings can exchange heat more or less readily depending on their level of spatial organization. The research team measured the latter with physics applications that reduce the complex geography of urban construction to a simpler, statistically determined representation using building clusters. They demonstrated that a high level of urban organization - as typified by most North American cities - results in more pronounced UHI effects and greater heat retention. The opposite is true for more "disorganized" cities. In countries with hot or temperate climates, the UHI effect leads to significantly higher energy bills. In cold climates, on the other hand, it could potentially help reduce energy demand. Population growth estimates can be used to identify countries that stand to benefit most from the UHI effect. This knowledge can help policymakers optimize building energy consumption and thereby lighten carbon emissions at the city, regional, and even state level.
![]() ![]() New Zealand summer heatwave sets all-time record Wellington (AFP) March 5, 2018 New Zealand has sweltered through its hottest summer on record and can expect more of the same if climate change continues unabated, the government's scientific agency said Tuesday. Daily temperatures averaged 18.8 Celsius (65.84 Farenheit), 2.1C more than normal, the National Institute of Water and Atmospheric Research (NIWA) said. With the mercury reaching as high as 38.7C in the South Island, NIWA said it was the hottest summer since records began in 1909, surpassing the previous high set in ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |