. Space Travel News .




.
TECH SPACE
When it comes to churning out electrons, metal glass beats plastics
by Staff Writers
Washington DC (SPX) Nov 23, 2011

Though other composites of bulk metallic glass and carbon nanotubes have been reported before, this is the first time that such a system is being used for a functional device, such as for field emission.

Field emission devices, which produce a steady stream of electrons, have a host of consumer, industrial, and research applications. Recent designs based on nanotubes and other nanomaterials embedded in plastics show initial promise, but have a number of drawbacks that hinder their wide-scale application.

The embedded nanotubes, which serve as the source for the electrons, also enable the normally inert plastic to conduct electricity. This has the desired effect of producing a versatile and easily manufactured field emission device.

But since plastics are, by nature, poor conductors of electricity, they require a high concentration of nanomaterials to function. Plastics also have low thermal stability and do not hold up well under the excess heat produced by prolonged operation.

A team of researchers from Monash University in Australia, in collaboration with colleagues from CSIRO Process Science and Engineering, has developed a promising and easily manufactured replacement for plastics: amorphous bulk metallic glass (ABM).

These ABM alloys form amorphous materials as they cool, giving them more of a glass-like behavior. In a paper accepted for publication in the AIP's journal Applied Physics Letters, the researchers used an alloy made from magnesium, copper, and gadolinium.

This metallic glass has many of plastics' desirable features. It can conform to a variety of shapes, be produced in bulk, and serve as an effective matrix for the nanotubes.

Besides its high conductivity, the metallic glass' highly robust thermal properties mean that it can withstand high temperatures and still retain its shape and durability.

According to the researchers, these advantages, alongside excellent electron emission properties, make these composites one of the best reported options for electron emission applications to date.

Though other composites of bulk metallic glass and carbon nanotubes have been reported before, this is the first time that such a system is being used for a functional device, such as for field emission.

Electron microscopes, microwave or X-ray generation, nano-electronics, and modern display devices are all examples of the potential applications of this technology, the researchers note.

"High performance bulk metallic glass/carbon nanotube composite cathodes for electron field emission" is published in Applied Physics Letters. Authors: Pejman Hojati-Talemi (1, 2), Mark A. Gibson (3), Daniel East (1), and Geroge P. Simon (1).

Related Links
American Institute of Physics
Space Technology News - Applications and Research




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



TECH SPACE
Multidisciplinary team of researchers develop world's lightest material
Irvine, CA (SPX) Nov 21, 2011
A team of researchers from UC Irvine, HRL Laboratories and the California Institute of Technology have developed the world's lightest material - with a density of 0.9 mg/cc - about one hundred times lighter than Styrofoam. Their findings appear in Science. The new material redefines the limits of lightweight materials because of its unique "micro-lattice" cellular architecture. The researc ... read more


TECH SPACE
Mobile Launcher Moves to Launch Pad

Rocket engineer Wolfgang Jung a logistics expert for space science

Arianespace to launch satellite for DIRECTV Latin America

Delta Mariner offloads launch components at Vandenberg

TECH SPACE
MRO Catches Mars Sand Dunes in Motion

MSL Entry, Descent and Landing Instrumentation Will Be A Data Rich Feed

MSL launch delayed to Saturday Nov 26

New Missions To Investigate How Mars Turned Hostile

TECH SPACE
LRO Camera Team Releases High Resolution Global Topographic Map of Moon

Mystery of the Lunar Ionosphere

Ancient Lunar Dynamo May Explain Magnetized Moon Rocks

Ancient Lunar Dynamo May Explain Magnetized Moon Rocks

TECH SPACE
Pluto's Hidden Ocean

Is the Pluto System Dangerous?

Starlight study shows Pluto's chilly twin

New Horizons App Now Available

TECH SPACE
Exo planet count tops 700

Giant planet ejected from the solar system

Three New Planets and a Mystery Object Discovered Outside Our Solar System

Dwarf planet sized up accurately as it blocks light of faint star

TECH SPACE
NASA's New Upper Stage Engine Passes Major Test

Pentagon successfully tests hypersonic flying bomb

Northrop Grumman Modular Space Vehicle Completes Preliminary Design Review

Simulating space in Gottingen

TECH SPACE
China launches two satellites: state media

Shenzhou-8 departs from in-orbit lab, ready for return

China's spacecraft comes back to Earth

Shenzhou for Dummies

TECH SPACE
Lutetia: a Rare Survivor from the Birth of the Earth

Swift Observatory Catches Asteroid Flyby

NASA Releases Radar Movie of Asteroid 2005 YU55

NASA Releases Radar Movie of Asteroid 2005 YU55


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement