Subscribe free to our newsletters via your
. Space Travel News .




NANO TECH
What if the nanoworld slides
by Staff Writers
Trieste, Italy (SPX) Nov 15, 2012


Colloidals are part of our everyday life (e.g. milk, asphalt or smoke) and they differentiate according to the state of the dispersed and dispersing substance (liquid, solid or gaseous).

A study published by Andrea Vanossi, Nicola Manini and Erio Tosatti - three SISSA researchers - in PNAS (Proceedings of the National Academy of Sciences) provides a new tool to better understand how sliding friction works in nanotribology, through colloidal crystals.

By theoretically studying these systems of charged microparticles, researchers are able to analyze friction forces through molecular dynamics simulations with accuracy never experienced before.

"There are several and very concrete potentialities", stated Andrea Vanossi, one of the members of the research group. "Just think of the constant miniaturization of high-tech components and of all the different nanotechnology sectors: if we understand how friction works at these levels, we will be able to create even more effective molecular motors or functional microsystems".

Colloidals are part of our everyday life (e.g. milk, asphalt or smoke) and they differentiate according to the state of the dispersed and dispersing substance (liquid, solid or gaseous).

The simulations were performed by SISSA in collaboration with ICTP, the Department of Physics in Milan and the CNR-IOM Institute for Materials Manufacturing and they allowed understanding what happens when a colloidal monolayer slides against an optical reticle modifying some parameters such as surface corrugation, drift speed or contact geometry.

The research method is also something new. Before this simulation was performed, only some recent experiments carried out in Germany tried for the first time to describe the behaviour of individual particles of a colloid in friction conditions, but never in such a precise way.

More in detail, researchers also suggest a way to directly extract the energy lost in friction by using the sliding data of the colloid.

"This study is innovative also because it will allow predicting the different regimes of static friction realized according to the density of colloids and the strength of the optical reticle", added Erio Tosatti, another member of the research group.

"All this lets us assume that crystalline solid surfaces will act in a similar way. We have never been able to make such a hypothesis before".

This study will open the way to new systems to explore the complexity of similar events, maybe at a microscopic scale.

.


Related Links
International School of Advanced Studies (SISSA)
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
Strain tuning reveals promise in nanoscale manufacturing
Oak Ridge TN (SPX) Nov 13, 2012
Researchers at the Department of Energy's Oak Ridge National Laboratory have reported progress in fabricating advanced materials at the nanoscale. The spontaneous self-assembly of nanostructures composed of multiple elements paves the way toward materials that could improve a range of energy efficient technologies and data storage devices. ORNL Materials Science and Technology Division res ... read more


NANO TECH
Arianespace's fourth Spaceport mission with Soyuz ready for fueling

Ariane 5's sixth launch of 2012

Ariane 5 is poised for Arianespace's launch with the EUTELSAT 21B and Star One C3 satellites

Ariane 5 orbits EUTELSAT 21B and Star One C3 satellites

NANO TECH
Rover's 'SAM' Lab Instrument Suite Tastes Soil

Survey At 'Matijevic Hill' Wrapping Up

Mars orbiter back online after system swap

What Arctic Rocks Say About Mars: An Interview with Hans Amundsen

NANO TECH
China's Chang'e-3 to land on moon next year

Moon crater yields impact clues

Study: Moon basin formed by giant impact

NASA's LADEE Spacecraft Gets Final Science Instrument Installed

NANO TECH
Keck Observations Bring Weather Of Uranus Into Sharp Focus

At Pluto, Moons and Debris May Be Hazardous to New Horizons Spacecraft During Flyby

Sharpest-ever Ground-based Images of Pluto and Charon: Proves a Powerful Tool for Exoplanet Discoveries

The Kuiper Belt at 20: Paradigm Changes in Our Knowledge of the Solar System

NANO TECH
Lost in Space: Rogue Planet Spotted?

Lowell Astronomer, Collaborators Point The Way For Exoplanet Search

Lonely planet: Orphan world spotted in deep space

Discovery of a Giant Gap in the Disk of a Sun-like Star May Indicate Multiple Planets

NANO TECH
XCOR Announces ATK as Lynx Mark I Wing Detailed Design And Build Contractor

S.Korea postpones rocket launch: official

S.Korea urges Russia to send rocket parts swiftly

S. Korean space launch faces further delay

NANO TECH
Mr Xi in Space

China plans manned space launch in 2013: state media

China to launch manned spacecraft

Tiangong 1 Parked And Waiting As Shenzhou 10 Mission Prep Continues

NANO TECH
Comet collisions every 6 seconds explain 17-year-old stellar mystery

NASA Radar Images Asteroid 2007 PA8

Ball Aerospace/B612 Foundation Sign Contract for Sentinel Mission

Scientists Monitor Comet Breakup




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement