Space Travel News  
FLORA AND FAUNA
Whale Sharks Do The Math To Avoid That Sinking Feeling

The team's data revealed that whale sharks are able to glide without investing energy into movement when descending, but they had to beat their tails when they ascended. This occurs because sharks, unlike many fish, have negative buoyancy.
by Staff Writers
Lpndon, UK (SPX) Nov 29, 2010
They are the largest fish species in the ocean, but the majestic gliding motion of the whale shark is, scientists argue, an astonishing feat of mathematics and energy conservation. In new research published in the British Ecological Society's journal Functional Ecology marine scientists reveal how these massive sharks use geometry to enhance their natural negative buoyancy and stay afloat.

For most animals movement is crucial for survival, both for finding food and for evading predators. However, movement costs substantial amounts of energy and while this is true of land based animals it is even more complex for birds and marine animals which travel in three dimensions. Unsurprisingly this has a profound impact on their movement patterns.

"The key factor for animal movement is travel speed, which governs how much energy an animal uses, the distance it will travel and how often resources are encountered," said lead author Adrian Gleiss from Swansea University. "However, oceanic animals not only have to consider their travel speed, but also how vertical movement will affect their energy expenditure, which changes the whole perspective."

For the past four years, Adrian Gleiss and Rory Wilson, from Swansea University, worked with Brad Norman from ECOcean Inc. to lead an international team to investigate the movements of whale sharks, Rhincodon typus, at Ningaloo Reef in Western Australia.

They attached animal-borne motion sensors, accelerometers, to the free-swimming whale sharks to measure their swimming activity and vertical movement, which allowed them to quantify the energetic cost of vertical movement.

The team's data revealed that whale sharks are able to glide without investing energy into movement when descending, but they had to beat their tails when they ascended. This occurs because sharks, unlike many fish, have negative buoyancy.

Also, the steeper the sharks ascended, the harder they had to beat their tail and the more energy they had to invest. The Whale Sharks displayed two broad movement modes, one consisting of shallow ascent angles, which minimize the energetic cost of moving in the horizontal while a second characteristic of steeper ascent angles, optimized the energetic cost of vertical movement.

"These results demonstrate how geometry plays a crucial role in movement strategies for animals moving in 3-dimensions," concluded Gleiss. "This use of negative buoyancy may play a large part in oceanic sharks being able to locate and travel between scarce and unpredictable food sources efficiently."



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
British Ecological Society
Darwin Today At TerraDaily.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


FLORA AND FAUNA
Sage-Grouse Western Habitat Map Completed
Washington DC (SPX) Nov 29, 2010
Secretary of the Interior Ken Salazar has announced the completion of a breeding bird density map for the greater sage-grouse by the Bureau of Land Management in coordination with the Western Association of Fish and Wildlife Agencies, the U.S. Fish and Wildlife Service, and the Natural Resources Conservation Service. The map identifies important range-wide focal areas having high density o ... read more







FLORA AND FAUNA
Ariane rocket puts telecom satellites into orbit

45th Space Wing Launches NRO Satellite

FAA issues private spacecraft permit

Ball Aerospace STPSat-2 Satellite Launches Aboard STP-S26 Mission

FLORA AND FAUNA
Opportunity Checks out Intrepid Crater

Shallow Groundwater Reservoirs May Have Been Common On Mars

Earth bacteria could survive on Mars

Russia To Launch Unmanned Lander To Martian Moon In October 2011

FLORA AND FAUNA
Neptec Wins Canadian Space Agency Contract To Develop A New Generation Of Lunar Rovers

Mission to far side of moon proposed

Mining On The Moon Is A Not-So-Distant Possibility

A Softer Landing on the Moon

FLORA AND FAUNA
Kuiper Belt Of Many Colors

Reaching The Mid-Mission Milestone On The Way To Pluto

New Horizons Student Dust Counter Instrument Breaks Distance Record

Nitrogen Methane Dominate Icy Surface Of Eris

FLORA AND FAUNA
500th 'extrasolar' planet discovered

Planet From Another Galaxy Discovered

First glimpse of a planet from another galaxy

Eartly Dust Tails Point To Alien Worlds

FLORA AND FAUNA
Russia To Start Work On Nuclear Space Engine Next Year

Aerojet's High-Power Hall System Propels USAF AEHF Satellite

Masten Space Systems And Space Florida Sign Letter Of Intent

DARPA Concludes Review Of Falcon HTV-2 Flight Anomaly

FLORA AND FAUNA
China puts satellite in orbit

Condition Of China's Lunar Probe To Determine Future Application

Tasks For Tiangong

China To Launch First Female Astronauts

FLORA AND FAUNA
NASA Spacecraft Burns For Another Comet Flyby

Hayabusa's Harvest

Comet Snowstorm Engulfs Hartley 2

Japan confirms space probe brought home asteroid dust


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement