Space Travel News  
WHITE OUT
Unraveling the mystery of snowflakes, from the Alps to Antarctica
by Staff Writers
Lausanne, Switzerland (SPX) Apr 10, 2017


The six families of snowflakes used by the researchers. Image courtesy LTE/EPFL. Watch a video on the research here.

Imagine taking pictures of thousands of snowflakes from three different angles with a specialized instrument installed at an altitude of 2,500 meters. Then imagine using 3,500 of these pictures to manually train an algorithm to recognize six different classes of snowflakes.

And, finally, imagine using this algorithm to classify the snowflakes in the millions of remaining pictures into those six classes at breakneck speed. That's exactly what researchers at EPFL's Environmental Remote Sensing Laboratory (LTE) did, in a project spearheaded by Alexis Berne. Their pioneering approach was featured in the latest issue of Atmospheric Measurement Techniques.

"The scientific community has been trying to improve precipitation measurement and forecast for over 50 years. We now have a pretty good understanding of the mechanisms involved in rain," says Berne.

"But snow is a lot more complicated. Many factors - like the shape, geometry and electromagnetic properties of individual snowflakes - affect how snow crystals reflect signals back to weather radars, making our task much harder. And we still don't have a good grasp of the equivalent liquid water content of snowflakes. Our goal with this study was to better understand exactly what's falling when it snows, so that we can eventually improve snowfall forecast at high altitudes."

Berne also sees other applications for the team's findings, like a more accurate estimation of water equivalent stored in the snowpack for irrigation and hydropower.

Identifying snowflakes and their degree of riming
To reach their goal, the researchers acquired a Multi-Angle Snowflake Camera (MASC)- a sophisticated instrument composed by three synchronized cameras that simultaneously take high resolution (up to 35-micron) pictures of snowflakes as they pass through a metallic ring.

In collaboration with the Federal Office of Meteorology and Climatology MeteoSwiss and the Institute for Snow and Avalanche Research, they installed the MASC at a site near Davos, at an altitude of 2,500 meters, where it took pictures for an entire winter and at a site in coastal Antarctica, where it took pictures for an entire austral summer.

They then ran their algorithm to classify the snowflake images into six main classes based on existing classification: planar crystals, columnar crystals, graupels, aggregates, combination of column and planar crystals, and small particles.

The researchers used the pictures taken by the MASC to also determine the degree of riming of each snowflake based on its surface roughness (image 3). "Snowflakes change shape as they fall down the atmosphere - especially through clouds," says Berne. "Some of them gather frost and become more or less rimed snow crystals [#3-5 in the image], while others remain pristin and have a very low riming index." Riming is important because it is the process that turns cloud water droplets into precipitation in the form of ice - in other words, snow.

Comparing Alpine and Antarctic snowflakes
The next step was to compare the results obtained from the pictures taken near Davos in the Swiss Alps with those taken in Adelie Land on the coast of Antarctica. That revealed significant differences in how often every snowflake family appeared.

Most of the snowflakes in the Alps are aggregates (49%), followed by small particles and graupels. However, in Antarctica, the majority were small particles (54%), followed by aggregates and graupels.

According to Berne, these differences can be explained. "The fierce Antarctic winds continually erode the snowpack and result in the formation of tiny snow particles. What's more, Antarctic snowflakes have much less riming than Alpine snowflakes because the Antarctic air is a lot drier."

Another of the researchers' findings that will perhaps disappoint purists is that the 'stellar dendrite' type of snowflake - the one we typically associate with the 'ideal' snowflake - turned out to be rare at both sites, making up only 10% of snowflakes in the Alps and 5% of snowflakes in Antarctica.

Multi-instrumental approach
To tackle the complexity of the multiple processes involved, scientists usually rely on several different instruments when making meteorological measurements and weather forecasts. The results obtained by Berne's team will therefore provide even more insights when combined with other instruments, such as weather radars, which collect data on clouds and precipitation across all layers of the atmosphere.

As part of the international Solid Precipitation Intercomparison Experiment (SPICE), MeteoSwiss set up a rain gauge next to the MASC at the Davos site. The data have not been yet fully analyzed, but by comparing the type of snowflakes photographed by the MASC with the amount of water collected over a given period, the team will be able to test various hypotheses on snowflake liquid water content, which remains an enigma for atmospheric scientists.

A measurement campaign during the 2018 Winter Olympics
To bolster their findings, Berne's team needs to gather more data. They sent their MASC back to Antarctica for another data-collecting round this year; it will then head to the mountains of South Korea in 2018 for the Winter Olympics which will take place in Pyeongchang. "The more data we have, the more reliable our calculations will be," says Berne.

This research project combines fundamental and applied research. It involves three scientists: Alexis Berne and Christophe Praz from EPFL's Environmental Remote Sensing Laboratory and Yves-Alain Roulet from MeteoSwiss (the Federal Office of Meteorology and Climatology). MeteoSwiss has been working with EPFL for several years to improve its precipitation estimates and its numerical weather prediction model.

Research paper

WHITE OUT
Melting snow contains a toxic cocktail of pollutants
Montreal, Canada (SPX) Apr 10, 2017
With spring finally here and warmer temperatures just around the corner, snow will slowly melt away, releasing us from the clutches of winter. However, that's not the only thing that the melting snow will release. Researchers from McGill University and Ecole de technologie superieure in Montreal have found that urban snow accumulates a toxic cocktail from car emissions - pollutants that are in t ... read more

Related Links
Ecole Polytechnique Federale de Lausanne
It's A White Out at TerraDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WHITE OUT
WHITE OUT
New MAVEN findings reveal how Mars' atmosphere was lost to space

Potential Mars Airplane Resumes Flight

Prolific Mars Orbiter Completes 50,000 Orbits

Final two ExoMars landing sites chosen

WHITE OUT
How a young-looking lunar volcano hides its true age

Surviving the long dark night of the Moon

Team Indus To Send Seven Experiments To The Moon Including Three From India

Sun Devils working for a chance to induce photosynthesis on our lunar neighbor

WHITE OUT
Neptune's movement from the inner to the outer solar system was smooth and calm

Four unknown objects being investigated in Planet X

New Horizons Halfway from Pluto to Next Flyby Target

ANU leads public search for Planet X

WHITE OUT
Exoplanet mission gets ticket to ride

Inside Arctic ice lies a frozen rainforest of microorganisms

Astronomers confirm atmosphere around the super-Earth

TRAPPIST-1 flares threaten possibility of habitability on surrounding exoplanets

WHITE OUT
US Hardware Production Begins for Money-Saving Next-Generation Rockets

'Fuzzy' fibers can take rockets' heat

Flight Tests of Super-Heavy Angara-A5V Carrier Rocket May Start in 2027

Kremlin Believes Russia Can Compete With Private Firms Like SpaceX in Space

WHITE OUT
Yuanwang fleet to carry out 19 space tracking tasks in 2017

China Develops Spaceship Capable of Moon Landing

Long March-7 Y2 ready for launch of China's first cargo spacecraft

China Seeks Space Rockets Launched from Airplanes

WHITE OUT
Comet That Took a Century to Confirm Passes by Earth

Wrong-way asteroid plays 'chicken' with Jupiter

A Trojan in Retreat

ExoTerra to become first privately owned space company to fly to an asteroid









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.