Subscribe free to our newsletters via your
. Space Travel News .




STELLAR CHEMISTRY
Universe's first stars left unique chemical signatures
by Brooks Hays
Livermore, Calif. (UPI) Jul 1, 2015


disclaimer: image is for illustration purposes only

Researchers at Lawrence Livermore National Laboratory are on the case of the missing alpha star signatures. Scientist Brian Bucher recently made a breakthrough in predicting what the universe's first generation of stars might look like -- chemically speaking.

The cosmos' original stars were different than today's stars. They didn't have the plethora of heavy elements common in the modern universe at their disposal. They had to make their own.

Thanks to their inventiveness, the elements that make life possible are now littered throughout the cosmos. But when the first stars were born, just 400 million years after the Big Bang, there was only hydrogen and helium. Fusion in the bellies of these original stars converted the two elements into an array of heavier ones -- oxygen, nitrogen, carbon, iron and others.

But to pinpoint the remnants of these ancient stars, researchers need a more precise understanding of what chemicals will be left over. What chemical patterns will give away their once-presence?

"It is vital to our understanding of the properties of the first stars and the formation of the first galaxies to verify the predicted composition of stellar ashes by comparing them to observational data," Bucher said in a press release.

The key to predicting chemical composition is modeling. But to build the proper models, scientists need to recreate chemical reactions in the lab. One of those elusive reactions is the fusion of two carbon nuclei into a magnesium nucleus and one neutron. It's a reaction that's been near impossible to capture.

But Bucher and his colleagues were finally able to do it -- observing the fusion at intense star-like energies using a lab accelerator.

"With this new measurement, we have significantly improved the precision of this rate for stellar modeling," Bucher said. "We've studied its impact on the resulting stellar abundance pattern predictions, helping to identify the signature of the universe's elusive first generation of stars and their supernovae."

The breakthrough was detailed in the journal Physical Review Letters.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Supernova remnant yields evidence of source of dusty galaxies
Charlottesville, Va. (UPI) Jan 6, 2013
Supernovas are thought to be a primary source of dust in galaxies, and U.S. astronomers say the remains of a recent supernova are full of freshly formed dust. Direct evidence of a supernova's dust-making capabilities has up to now been slim and cannot account for the copious amount of dust detected in young, distant galaxies, they said, but data from radio telescopes in Chile could expl ... read more


STELLAR CHEMISTRY
More Fidelity for SpaceX In-Flight Abort Reduces Risk

Rocket Lab Announces World's First Commercial Launch Site

NovaWurks and Spaceflight Services set for payload test bed mission in 2017

SpaceX rocket explodes after launch

STELLAR CHEMISTRY
Prandtl-m prototype could pave way for first plane on Mars

New plan proposed to send humans to Mars

Rover In Good Health After Communication Blackout

Veteran NASA Spacecraft Nears 60,000th Lap Around Mars, No Pit Stops

STELLAR CHEMISTRY
Russia to Land Space Vessel on Moon's Polar Region in 2019

Moon engulfed in permanent, lopsided dust cloud

Crashing comets may explain mysterious lunar swirls

Google Lunar X-Prize meets Yoda

STELLAR CHEMISTRY
NASA Met Unprecedented Challenges Sending Spacecraft to Pluto

New Horizons 'Speeds Up' on Final Approach to Pluto

New Horizons Spacecraft Stays the Course to Pluto

37 Years after Its Discovery, Pluto's Moon Charon Is Being Revealed

STELLAR CHEMISTRY
Precise ages of largest number of stars hosting planets ever measured

Can Planets Be Rejuvenated Around Dead Stars?

Spiral arms cradle baby terrestrial planets

Supercomputer model shows planet making waves in nearby debris disk

STELLAR CHEMISTRY
Engineers help NASA fine-tune new Space Launch System

Longest SLS Engine Test Yet Heats Up Summer Sky

US Space Command warns on overly fast Russian rocket engine phase out

String of cargo disasters puts pressure on space industry

STELLAR CHEMISTRY
China set to bolster space, polar security

Cooperation in satellite technology put Belgium, China to forefront

China's super "eye" to speed up space rendezvous

Electric thruster propels China's interstellar ambitions

STELLAR CHEMISTRY
Million-mile journey to an asteroid begins for ASU-built instrument

18 holes in outer space: Comet's crater's revealed

NASA Wants to Nuke Asteroids That Threaten to Destroy Earth

Telescopes focus on target of ESA's asteroid mission




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.