Subscribe free to our newsletters via your
. Space Travel News .




INTERN DAILY
Understanding hearing
by Staff Writers
Munich, Germany (SPX) Dec 03, 2013


The main elements of a cochlear implant are: the speech processor worn outside, the receiver unit implanted under the skin and the electrode, which stimulates the auditory nerve. - Image: MED-EL GmbH, Innsbruck (Austria)

Children learning to speak depend on functional hearing. So-called cochlear implants allow deaf people to hear again by stimulating the auditory nerve directly. Researchers at the Technische Universitaet Muenchen (TUM) are working to overcome current limits of the technology.

They are investigating the implementation of signals in the auditory nerve and the subsequent neuronal processing in the brain. Using the computer models developed at the TUM manufacturers of cochlear implants improve their devices.

Intact hearing is a prerequisite for learning to speak. This is why children who are born deaf are fitted with so-called cochlear implants as early as possible.

Cochlear implants consist of a speech processor and a transmitter coil worn behind the ear, together with the actual implant, an encapsulated microprocessor placed under the skin to directly stimulate the auditory nerve via an electrode with up to 22 contacts.

Adults who have lost their hearing can also benefit from cochlear implants. The devices have advanced to the most successful neuroprostheses. They allow patients to understand the spoken word quite well again.

But the limits of the technology are reached when listening to music, for example, or when many people speak at once. Initial improvements are realized by using cochlear implants in both ears.

A further major development leap would ensue if spatial hearing could be restored. Since our ears are located a few centimeters apart, sound waves form a given source generally reach one ear before the other.

The difference is only a few millionths of a second, but that is enough for the brain to localize the sound source. Modern microprocessors can react sufficiently fast, but a nerve impulse takes around one hundred times longer. To achieve a perfect interplay, new strategies need to be developed.

Modeling the auditory system
The perception of sound information begins in the inner ear. There, hair cells translate the mechanical vibrations into so-called action potentials, the language of nerve cells.

Neural circuitry in the brain stem, mesencephalon and diencephalon transmits the signals to the auditory cortex, where around 100 million nerve cells are responsible for creating our perception of sound. Unfortunately, this "coding" is still poorly understood by science.

"Getting implants to operate more precisely will require strategies that are better geared to the information processing of the neuronal circuits in the brain. The prerequisite for this is a better understanding of the auditory system," explains Professor Werner Hemmert, director of the Department for Bio-Inspired Information Processing, at the TUM Institute of Medical Engineering (IMETUM).

Based on physiological measurements of neurons, his working group successfully built a computer model of acoustic coding in the inner ear and the neuronal information processing by the brain stem. This model will allow the researchers to further develop coding strategies and test them in experiments on people with normal hearing, as well as people carrying implants.

The fast track to better hearing aids
For manufacturers of cochlear implants collaborating with the TUM researchers, these models are very beneficial evaluation tools. Preliminary testing at the computer translates into enormous time and cost savings.

"Many ideas can now be tested significantly faster. Then only the most promising processes need to be evaluated in cumbersome patient trials," says Werner Hemmert. The new models thus have the potential to significantly reduce development cycles. "In this way, patients will benefit from better devices sooner."

M. Nicoletti, C. Wirtz, W. Hemmert: Modeling Sound Localization with Cochlear Implants, The Technology of Binaural Listening, Springer-Verlag Berlin Heidelberg, 2013

.


Related Links
Technische Universitaet Muenchen
Hospital and Medical News at InternDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








INTERN DAILY
Hong Kong's illegal cancer drug trade driven by mainland buyers
Hong Kong (AFP) Dec 02, 2013
Safety fears over medication in mainland China are driving a risky illegal trade in cancer drugs in Hong Kong, experts say, warning of shortages in a similar scenario to the milk formula crisis that emptied shelves in the territory. Hong Kong pharmacies are selling the drugs under the counter to mainland Chinese visitors who have lost faith in their own medical system and are dodging high pr ... read more


INTERN DAILY
SpaceX postpones first satellite launch

Second rocket launch site depends on satellite size, cost-benefit

Private US launch of satellite delayed

Stepping up Vega launcher production

INTERN DAILY
Deep Space Perils For Indian Spacecraft

Curiosity Resumes Science After Analysis of Voltage Issue

Winter Means Less Power for Solar Panels

Unusual greenhouse gases may have raised ancient Martian temperature

INTERN DAILY
China launches first moon rover mission

Japanese firm describes proposed 'power belt' for the moon

Helping China To The Moon

Spotlight on China's Moon Rover

INTERN DAILY
The Sounds of New Horizons

On the Path to Pluto, 5 AU and Closing

SwRI study finds that Pluto satellites' orbital ballet may hint of long-ago collisions

Archival Hubble Images Reveal Neptune's "Lost" Inner Moon

INTERN DAILY
The State of Super Earths

Search for habitable planets should be more conservative

NASA Kepler Results Usher in a New Era of Astronomy

Astronomers answer key question: How common are habitable planets?

INTERN DAILY
South Korea to launch homegrown rocket by 2020

XCOR and ULA Achieve Major Milestone With Liquid Hydrogen Engine

Wind Tunnel Testing Used to Understand the Unsteady Side of Aerodynamics

NASA and Sweden to test High Performance Green Propulsion technology

INTERN DAILY
Designer: moon rover uses cutting-edge technology

Commentary: Lunar probe boosts "Chinese dream"

China to launch moon rover on Monday

China's "triple jump" progress in lunar probes

INTERN DAILY
NASA Investigating the Life of Comet ISON

Rock Comet Sprouts a Tail

Comet ISON probably did not survive Sun skirmish

Comet ISON vs. the Solar Storm




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement