Subscribe free to our newsletters via your
. Space Travel News .




SOLAR DAILY
Uncovering the secrets of super solar power perovskites
by Staff Writers
Salt Lake City UT (SPX) Mar 17, 2015


This is a schematic presentation of the obtained magnetic field effect of photocarriers in photovoltaic cells and injected carriers in light emitting diodes based on hybrid organic/inorganic perovskite semiconductors, which originates from different precession frequencies of the electron (red) and hole (blue) about an applied magnetic field (arrow). Image courtesy University of Utah. For a larger version of this image please go here.

The best hope for cheap, super-efficient solar power is a remarkable family of crystalline materials called hybrid perovskites. In just five years of development, hybrid perovskite solar cells have attained power conversion efficiencies that took decades to achieve with the top-performing conventional materials used to generate electricity from sunlight.

Now researchers at the University of Utah, in collaboration with the University of Texas at Dallas, have uncovered some of the secrets behind the amazing material's performance. The findings, published in the journal Nature Physics, help fill a deep void in hybrid perovskite solar cell research. Scientists and engineers have lacked a clear understanding of the precise goings on at the molecular level.

Among the practical results of the new study is proof of a way to rapidly test the performance of different prototypes of hybrid perovskite materials using magnetic fields, according to lead author Charlie Zhang, a post-doctoral research fellow, and senior author Z. Valy Vardeny, a distinguished professor of physics at the University of Utah.

"Our group has unique expertise in magnetic field effects," Vardeny says. "We wanted to see if magnetic field effects would tell us why the efficiency is so high."

Probing electronic properties
Applying a magnetic field makes it possible to glean clues about the behavior of electrons and "holes" in semiconductor compounds. In photovoltaic solar cells, molecules absorb incoming photons of sunlight. Each absorbed photon can generate an exciton, the pairing of an electron and a corresponding electron hole. These pairings are short-lived and split into free, charge-carrying particles that drive an electric current.

Electrons and holes have a magnetic-related property called 'spin', a form of angular momentum; and the torque of a magnetic field can alter the spin direction. Spin can't be observed directly, but spin properties can be inferred by looking at readily measurable properties, such as changes in the electrical conductivity of a material, or changes in photoluminescence - its tendency to emit light after absorbing photons - when it is subjected to a magnetic field.

Zhang and colleagues measured magnetic field-induced changes in these properties in an assortment of fabricated hybrid perovskite solar cells having different solar power conversion efficiencies.

They used a typical hybrid perovskite material, methylammonium lead iodide, or MAPbI3. (Hybrid perovskites follow the naming convention MAPbX3, with MA denoting the organic methylammonium group that is combined with an inorganic group made of lead (Pb) and either chloride, bromide, or iodide (X)).

Contrary to conventional wisdom in the field, the Utah scientists found pronounced magnetic field effects. The magnetic properties of the heavy atoms of lead and iodine were thought to minimize magnetic field effects in hybrid perovskite solar cells.

How it works
The researchers proposed a mechanism to explain the effects based on how a magnetic field changes the spin configuration of electron-hole pairs. The spin configuration affects the rate at which electron-hole pairs split apart or recombine, which in turn respectively changes the electrical conductivity and photoluminescence of the perovskite.

They dubbed this effect the 'delta-g mechanism', with g being a factor that describes the magnetic moment of an electron in the material. Delta-g is the difference between the g-factors of an electron and hole, a difference that becomes crucial in how hybrid perovskite materials perform.

They verified this mechanism by measuring delta-g directly using a technique called field-induced circular polarized emission. It proved to be much larger than delta-g in ordinary organic solar cells, as would be expected if the delta-g mechanism were correct. For further confirmation, the researchers used a spectroscopy technique to measure the fleeting lifetimes - in trillionths of a second - of electron-hole pairs created by light absorption in the hybrid perovskite solar cells. The results also fit the delta-g mechanism.

Answering key questions
The findings point to an answer to a critical question: whether hybrid perovskite devices behave more like silicon solar cells or like so-called excitonic solar cells made of organic polymers. Vardeny said the magnetic field effects nailed down by his group are telling. "This material is not excitonic. If it were, we would not see this effect. It is not like organic photovoltaic materials."

The efficiency of converting sunlight to electric power has a theoretical limit of 33 percent. The hybrid perovskite photovoltaic devices are pushing 20 percent, not as good as the 26 percent of the best silicon cells, but closing in - and the hybrid perovskites can be produced at a fraction of the cost. The new findings provide more detailed understanding of the underlying physics that should help researchers to fully optimize hybrid perovskite solar cells.

Harnessing solar energy using photovoltaic cells has become more accessible with the addition of the hybrid perovskite 'miracle materials', Vardeny says. "This is important since the gasoline price at the pumps would not stay that low forever."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Utah
All About Solar Energy at SolarDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





SOLAR DAILY
EU members reach renewable targets early
Brussels (UPI) Mar 10, 2015
Three members of the European Union have already achieved their renewable energy goals for 2020, the European statistics office said Tuesday. EU member states are obligated to use renewable resources for 20 percent of final their energy consumption by 2020. Eurostat reported Bulgaria, Estonia and Sweden reached their targets five years ahead of schedule. "Moreover, Lithuania, Rom ... read more


SOLAR DAILY
Soyuz Installed at Baikonur, Expected to Launch Wednesday

45th Space Wing unveils multi-vehicle launch support center

THOR 7 being fueled for Arianespace's dual-payload April mission

Arianespace wins SES-15 launch contract

SOLAR DAILY
Taking a Closer Look at Purple-Bluish Rock Formation

Mystery Giant Mars Plumes Still Unexplained

Have you ever used a camera on board an interplanetary spacecraft

Use of Rover Arm Expected to Resume in a Few Days

SOLAR DAILY
Billionaire Teams Up with NASA to Mine the Moon

China Gets One Step Closer to Completing its Ambitious Lunar Mission

Core work: Iron vapor gives clues to formation of Earth and moon

Application of laser microprobe technology to Apollo samples refines lunar impact history

SOLAR DAILY
Science Shorts: Why Pluto?

Pluto Science, on the Surface

Science Shorts: How Big Is Pluto's Atmosphere?

New Horizons Spots Small Moons Orbiting Pluto

SOLAR DAILY
Scientists: Nearby Earth-like planet isn't just 'noise'

'Habitable' planet GJ 581d previously dismissed as noise probably does exist

Exorings on the Horizon

Planet 'Reared' by Four Parent Stars

SOLAR DAILY
Booster Temps Will be Just Right for Major Ground Test

In 'milestone' toward Mars, NASA test-fires rocket

Heat Shield for NASA's Orion Continues Post-Flight Journey by Land

Shaking test for for Space Launch System at Redstone Test Center

SOLAR DAILY
China's Space Laboratory Still Cloaked

China has ability but no plan for manned lunar mission: expert

Tianzhou-1 cargo ship to dock with space lab in 2016

China's test spacecraft simulates orbital docking

SOLAR DAILY
Scientists Will Try to Contact the Comet Lander on March 12

Wake up Philae! The world awaits news

Comet mission in bid to contact dormant Philae probe

Dawn: We Have Arrived at Ceres




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.