Space Travel News  
SOLAR DAILY
Ultrathin organic solar cell is both efficient and durable
by Staff Writers
Tokyo, Japan (SPX) Mar 10, 2020

Ultra-thin organic solar cell

Scientists from the RIKEN Cluster for Pioneering Research and RIKEN Center for Emergent Matter Science have succeeded, in collaboration with international partners, in creating an ultrathin organic solar cell that is both highly efficient and durable.

Using a simple post-annealing process, they created a flexible organic cell that degrades by less than 5 percent over 3,000 hours in atmospheric conditions and that simultaneously has an energy conversion ratio - a key indicator of solar cell performance - of 13 percent.

Organic photovoltaics are considered to be a promising alternative to silicon-based conventional films, being more environmentally friendly and cheap to produce. Ultrathin flexible solar cells are particularly attractive, as they could provide large power per weight and be used in a variety of useful applications such as powering wearable electronics and as sensors and actuators in soft robotics.

However, ultrathin organic films tend to be relatively efficient, typically having an energy conversion ratio of around 10 to 12 percent, significantly lower than the ratio in silicon cells, which can be as high as 25 percent, or of rigid organic cells, which can be up to around 17 percent.

Ultrathin films also tend to degrade rapidly under the influence of sunlight, heat, and oxygen. Researchers are trying to create ultrathin films that are both energy efficient and durable, but it is often a difficult tradeoff.

In research published in Proceedings of the National Academy of Sciences of the United States of America, the group succeeded in showing that an ultrathin cell can be both durable and efficient. The group began with a semiconductor polymer for the donor layer, developed by Toray Industries, Inc., and experimented with a new idea, of using a non-fullerene acceptor, increasing the thermal stability.

On top of this, they experimented with a simple post-annealing process, where the material was heated to 150 degrees Celsius after an initial annealing at 90 degrees. This step proved to be critical in increasing the durability of device by creating a stable interface between the layers.

According to Kenjiro Fukuda, one of the authors of the study, "By combining a new power generation layer with a simple post-annealing treatment, we have achieved both high energy conversion efficiency and long-term storage stability in ultra-thin organic solar cells.

"Our research shows that ultra-thin organic solar cells can be used to supply high power in a stable way over long periods of time, and can be used even under severe conditions such as high temperature and humidity. I very much hope that this research will contribute to the development of long-term stable power supply devices that can be used in wearable electronics such as sensors attached to clothes."

Research paper


Related Links
RIKEN
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
New type of indoor solar cells for smart connected devices
Uppsala, Sweden (SPX) Mar 05, 2020
In a future where most things in our everyday life are connected through the internet, devices and sensors will need to run without wires or batteries. In a new article in Chemical Science, researchers from Uppsala University present a new type of dye-sensitised solar cells that harvest light from indoor lamps. The Internet of Things, or IoT, refers to a network of physical devices and applications connected through the internet. It is estimated that by 2025, many facets of our lives will be media ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
SOLAR DAILY
Seismic activity on Mars resembles that found in the Swabian Jura

Ancient meteorite site on Earth could reveal new clues about Mars' past

The seismicity of Mars

Magnetic field at Martian surface ten times stronger than expected

SOLAR DAILY
Join the Artemis Generation

China's lunar rover travels nearly 400 meters on moon's far side

Gemini Telescope Images "Minimoon" Orbiting Earth

Mission Control to Develop Lunar Surface Autonomous Science Payload for CSA

SOLAR DAILY
Ultraviolet instrument delivered for ESA's Jupiter mission

One Step Closer to the Edge of the Solar System

TRIDENT Mission Concept Selected by NASA's Discovery Program

Findings from Juno Update Jupiter Water Mystery

SOLAR DAILY
Salmon parasite is world's first non-oxygen breathing animal

Hydrogen energy at the root of life

NASA approves development of universe-studying, planet-finding mission

What if mysterious 'cotton candy' planets actually sport rings?

SOLAR DAILY
OmegA on track to support certification launch in 2021

US trying to catch up with Russia, China in hypersonics

New generation rocket engines to be tested at Esrange

SpaceX Starship prototype explodes in test again

SOLAR DAILY
China's Yuanwang-5 sails to Pacific Ocean for space monitoring mission

Construction of China's space station begins with start of LM-5B launch campaign

China Prepares to Launch Unknown Satellite Aboard Long March 7A Rocket

China's Long March-5B carrier rocket arrives at launch site

SOLAR DAILY
An iron-clad asteroid

Iron 'whiskers' found covering Itokawa asteroid samples

Turbulent times revealed on Asteroid 4 Vesta

How to deflect an asteroid









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.