. Space Travel News .




.
TECH SPACE
Ultrafast laser pulses shed light on elusive superconducting mechanism
by Staff Writers
Vancouver, Canada (SPX) Apr 02, 2012

File image.

An international team that includes University of British Columbia physicists has used ultra-fast laser pulses to identify the microscopic interactions that drive high-temperature superconductivity.

In the experiment, to be outlined this Friday in the journal Science, electrons in a prototypical copper-oxide superconductor were excited by extremely short 100-femtosecond (0.0000000000001-second) laser pulses.

As the material's electrons relax back to an equilibrium state, they release their excess energy via deformation of the superconductor's atomic lattice (phonons) or perturbation of its magnetic correlations (spin fluctuations).

The researchers were able to capture very fine grained data on the speed of the relaxation process and its influence on the properties of the superconducting system, showing that the high-critical temperature of these compounds can be accounted for by purely electronic (magnetic) processes.

"This new technique offers us our best window yet on the interactions that govern the formation of these elusive superconducting properties--both across time and across a wide range of characteristic energies," says UBC Associate Professor Andrea Damascelli, Canada Research Chair in Electronic Structure of Solids with the Department of Physics and Astronomy and the UBC Quantum Matter Institute.

"We're now able to begin to disentangle the different interactions that contribute to this fascinating behavior."

Superconductivity--the phenomenon of conducting electricity with no resistance--occurs in some materials at very low temperatures. High-temperature cuprate superconductors are capable of conducting electricity without resistance at temperatures as high as -140 degrees Celsius.

The key mechanism that allows the carriers to flow without resistance in superconductors stems from an effective pairing between electrons. In conventional metallic superconductors, this pairing mechanism is well understood as phonon-mediated. In copper-oxides, the nature of the low-resistance interaction between the electrons has remained a mystery.

"This breakthrough in the understanding of the puzzling properties of copper-oxides paves the way to finally solving the mystery of high-temperature superconductivity and revealing the key knobs for engineering new superconducting materials with even higher transition temperatures," says the paper's lead author Claudio Giannetti, a researcher with Italy's Universita Cattolica del Sacro Cuore and visiting professor at UBC's Quantum Matter Institute.

The international collaboration also involved contributions from Japanese, Swiss and American researchers.

Related Links
University of British Columbia
Space Technology News - Applications and Research




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries



And it's 3... 2... 1... blastoff! Discover the thrill of a real-life rocket launch.



.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



TECH SPACE
ORNL process converts polyethylene into carbon fiber
Oak Ridge, TN (SPX) Mar 30, 2012
Common material such as polyethylene used in plastic bags could be turned into something far more valuable through a process being developed at the Department of Energy's Oak Ridge National Laboratory. In a paper published in Advanced Materials, a team led by Amit Naskar of the Materials Science and Technology Division outlined a method that allows not only for production of carbon fiber b ... read more


TECH SPACE
Space Launch System Program Completes Step One of Combined Milestone Reviews

Russian Proton-M Puts Military Satellite into Orbit

ORS SpaceLoft-6 launch to test reliability, durability of payloads in suborbital voyage

China launches French-made communication satellite

TECH SPACE
Dusty, Acidic Glaciers Could Explain Layered Deposits on Mars

Slight Drop Of Left-Front Wheel

'Mount Sharp' On Mars Links Geology's Past and Future

A glow in the Martian night throws light on atmospheric circulation

TECH SPACE
Flying Formation - Around the Moon at 3,600 MPH

NASA's Grail MoonKam Returns First Student-Selected Lunar Images

Ecliptic "MoonKAM" Systems Begin Operations in Lunar Orbit

Two New NASA LRO Videos: See Moon's Evolution, Take a Tour

TECH SPACE
New Horizons on Approach: 22 AU Down, Just 10 to Go

TECH SPACE
Billions of Habitable Zone Rocky Planets Could be Orbiting Red Dwarf Stars

Runaway Planets Zoom at a Fraction of Light-Speed

Some orbits more popular than others in solar systems

Herschel's new view on giant planet formation

TECH SPACE
Getting to the moon on drops of fuel

NASA Fires Up Rocket Sled Hardware at China Lake

Russia to Build Nuclear Space Engine by 2017

Russia plans to build nuclear space engine

TECH SPACE
China's Lunar Docking

Shenzhou-9 may take female astronaut to space

China to launch 100 satellites during 2011-15

Three for Tiangong

TECH SPACE
New NEO Website Tool Now Available

Dawn Sees New Surface Features on Giant Asteroid

Near-miss asteroid will return next year

Dear Ups and Dawns


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement