Space Travel News  
CARBON WORLDS
Two-dimensional ionic liquids to effectively capture carbon dioxide
by Staff Writers
Beijing, China (SPX) Jul 14, 2022

The ultrahigh CO2 adsorption capacity of two-dimensional ionic liquids.

In the context of global concern about climate change and greenhouse gas control, a new technology for CO2 capture, utilization, and storage has attracted broad attention. Ionic liquids, composed of only cations and anions, are considered a new type of CO2 adsorbent due to their ultralow vapor pressure and environmentally friendly features.

Recently, a group led by Profs ZHANG Suojiang and HE Hongyan from the Institute of Process Engineering (IPE) of the Chinese Academy of Sciences (CAS) has found that two-dimensional ionic liquids show a completely different melting behaviour than the bulk phase, leading to a high CO2 adsorption capacity and structural robustness during the CO2 adsorption-desorption process.

The researchers found that ionic liquids can form a two-dimensional-monolayer, ordered, checkerboard structure when supported by a metal surface. The two-dimensional ionic liquids exhibited anomalous stepwise melting processes, involving localized-rotated, out-of-plane-flipped, and fully disordered states, rather than the single melting point for the bulk ionic liquids.

"Anions and cations are arranged together in a checkerboard manner, thus forming a two-dimensional, ordered Z-bond network. This makes it more likely for the multi-step melting behaviors such as ionic rotation and flip," said Prof. HE.

The massive molecular dynamics simulation indicates that the two-dimensional ionic liquids show excellent performance for CO2 capture due to the unsaturated and exposed Z-bonds. The mole fraction of CO2 adsorbed by two-dimensional [Mmim]PF6 was improved by at least one order of magnitude compared with the corresponding bulk ionic liquids.

"The higher CO2 adsorption capability suggests that such two-dimensional ionic liquids could serve as functional layers of the catalyst to enhance the mass transfer process of CO2, which is important for the fixation and conversion of CO2," said Associate Professor WANG Yanlei of IPE.

This two-dimensional editing technique for ionic liquids is expected to provide a new method for the precise control and functional design of liquids, which is promising for various chemical engineering applications involving solvents, electrolytes, and liquid catalysts.

Research Report:Two dimensional ionic liquids with anomalous stepwise melting process and ultrahigh CO2 adsorption capacity


Related Links
Institute of Process Engineering
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CARBON WORLDS
New Findings on the Formation of Ionized Carbon
Columbia MD (SPX) Jul 12, 2022
Scientists have long held that star formation creates ionized carbon giving vital information for understanding our universe. But a new study led by Universities Space Research Association's Robert Minchin, has shown that ionized carbon is also formed by galaxies moving through the hot gas of the Virgo cluster. Since the 1990's scientists have suspected that ionized carbon might be formed by galaxies plowing through the hot gas of clusters-a process known as "ram pressure." Observations from ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
CARBON WORLDS
Ingenuity Postpones Flights Until August

Moving Right Along - Sol 3531

ESA fully cuts Mars mission ties with Russia, angering Moscow

MIT design for Mars propellant production trucks wins NASA competition

CARBON WORLDS
Advanced Navigation sets sight to be the first Australian company to reach the Moon

Can China claim ownership rights on the Moon

Porosity of the moon's crust reveals bombardment history

Experts find way to make better use of lunar samples

CARBON WORLDS
You can help scientists study the atmosphere on Jupiter

SwRI scientists identify a possible source for Charon's red cap

NASA's Europa Clipper Mission Completes Main Body of the Spacecraft

Gemini North Telescope Helps Explain Why Uranus and Neptune Are Different Colors

CARBON WORLDS
The life puzzle: the location of land on a planet can affect its habitability

NASA's Webb reveals steamy atmosphere of distant planet in detail

Building blocks for RNA-based life abound at center of our galaxy

NASA Helps Decipher How Some Distant Planets Have Clouds of Sand

CARBON WORLDS
Ariane 6 central core transferred to mobile gantry

To Sicily and beyond: ESA, partners debate future of space transportation

Hypersonics: Developing and defending against missiles far faster than sound

Rocket Lab Introduces Responsive Space Program

CARBON WORLDS
Shenzhou-14 Taikonauts conduct in-orbit science experiments, prepare for space walks

Wheels on China's Zhurong rover keep stable with novel material

Construction of China's first commercial spacecraft launch site starts in Hainan

Shenzhou XIII astronauts doing well after returning to Earth

CARBON WORLDS
Asteroid Bennu Reveals its Surface is Like a Plastic Ball Pit

Surface of asteroid Bennu soft like plastic ball pit, OSIRIS-REx spacecraft finds

SwRI-led study provides new insights about surface, structure of asteroid Bennu

Researchers ascertain forming of world's longest meteorite-strewn field









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.