Subscribe free to our newsletters via your
. Space Travel News .




WATER WORLD
Trigger for past rapid sea level rise discovered
by Staff Writers
Bristol UK (SPX) Jul 13, 2012


File image.

The cause of rapid sea level rise in the past has been found by scientists at the University of Bristol using climate and ice sheet models. The process, named 'saddle-collapse', was found to be the cause of two rapid sea level rise events: the Meltwater pulse 1a (MWP1a) around 14,600 years ago and the '8,200 year' event. The research was published in Nature this week.

Using a climate model, Dr Lauren Gregoire of Bristol's School of Geographical Sciences and colleagues unearthed the series of events that led to saddle-collapse in which domes of ice over North America became separated, leading to rapid melting and the opening of an ice free corridor.

Evidence of these events has been recorded in ocean cores and fossil coral reefs; however, to date the reason behind the events was unclear and widely debated.

Ice domes up to 3 km thick (three times the height of Snowdon), formed in regions of high snowfall and higher topography, such as the Rocky Mountains. Together with the saddles - lower valleys of ice between the domes - these made up the ice sheet.

Towards the end of the last ice age, at the time of mammoths and primitive humans, the climate naturally warmed. This started to melt ice at increasingly high elevations, eventually reaching and melting the saddle area between the ice domes.

This triggered a vicious circle in which the melting saddle would lower, reach warmer altitudes and melt even more rapidly until the saddle had completely melted. In just 500 years, the saddles disappeared and only the ice domes remained.

The melted ice flowed into the oceans leading to rapid sea level rises of 9 m in 500 years during the Meltwater pulse 1a event 14,600 years ago and 2.5 m in the second event, 8,200 years ago.

Dr Gregoire, lead author of the study, said: "We didn't expect our model to produce such a rapid sea level rise. We got really excited when we realised that the events we simulated corresponded to real events!"

In the model, Dr Gregoire found that saddle-collapse could explain a significant amount of the sea level rise observed: "The meltwater pulse produced by the saddle-collapse can explain more than half of the sea level jump observed around 14,600 years ago. The rest probably came from the progressive melting of ice sheets in Europe and Antarctica."

This research not only identifies the process which caused the melting of the North American ice sheet and the trigger for rapid sea level rises in the past, but also increases our understanding of the nature of ice sheets and climate change, allowing further questions to be posed and, with more research, answered.

Research like this allows climate and ice sheet models to be tested against evidence from the real world.

If climate models are able to reflect patterns observed in natural records our confidence in them increases. This is particularly relevant where the models are also used to investigate the effect of climate change on ice sheets in the future.

The study was funded by the NICE Marie Curie Research Training Network and the Natural Environment Research Council (NERC), and the numerical model simulations were carried out using the facilities of the Advanced Computing Research Centre (ACRC) at the University of Bristol.

.


Related Links
University of Bristol
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WATER WORLD
First seabed sonar to measure marine energy effect on environment and wildlife
Southampton UK (SPX) Jul 12, 2012
UK scientists will measure the effect on the marine environment and wildlife of devices that harness tide and wave energy using sonar technology that has, for the first time, been successfully deployed on the seabed. Renewable energy from tidal currents can be generated using turbines in the tidal flow, and wave energy can be captured in a number of different ways. FLOWBEC (Flow and Benthi ... read more


WATER WORLD
SpaceX Dragon Utilizes Cooper Interconnect Non-Explosive Actuators

ILS Proton Launches SES-5 For SES

Eutelsat and Arianespace pursue their longstanding collaboration with the signature of a new launch contract

Ariane 5 ECA orbits EchoStar XVII and MSG-3

WATER WORLD
NASA Mars images 'next best thing to being there'

Life's molecules could lie within reach of Mars Curiosity rover

Final Six-Member Crew Selected for Mars Food Mission

Opportunity Celebratres 3,000 Martian Days of Operation on the Surface of Mars!

WATER WORLD
ESA to catch laser beam from Moon mission

Researchers Estimate Ice Content of Crater at Moon's South Pole

Researchers find evidence of ice content at the moon's south pole

Nanoparticles found in moon glass bubbles explain weird lunar soil behaviour

WATER WORLD
Hubble Discovers a Fifth Moon Orbiting Pluto

Hubble telescope spots fifth moon near Pluto

New Horizons Doing Science in Its Sleep

It's a Sim: Out in Deep Space, New Horizons Practices the 2015 Pluto Encounter

WATER WORLD
The Mysterious Case of the Disappearing Dust

Study in Nature sheds new light on planet formation

New Instrument Sifts Through Starlight to Reveal New Worlds

Planet-Forming Disk Turns Off Lights, Locks Doors

WATER WORLD
HI-C Sounding Rocket Mission Has Finest Mirrors Ever Made

XCOR Aerospace And Midland Development Corp Announce New Commercial Spaceflight Research Center

Rocketdyne Completes CCDev 2 Hot Fire Testing on Thruster for NASA Commercial Crew Program

Thruster Tests Completed for Boeing's CST-100

WATER WORLD
Shenzhou mission sparks 'science fever'

China Beats Russia on Space Launches

China open to cooperation

China set to launch bigger space program

WATER WORLD
Planetary Resources Announces Agreement with Virgin Galactic for Payload Services

Explained: Near-miss asteroids

The B612 Foundation Announces The First Privately Funded Deep Space Mission

Ex-NASA astronauts aim to launch asteroid tracker




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement