Space Travel News  
CARBON WORLDS
Trapping climate pollutant methane gas in porous carbon
by Staff Writers
New York NY (SPX) Dec 08, 2015


Activated carbon, which is a type of carbon material containing numerous nanopores, is often used to adsorb gases in the energy sector.

As talks of global warming are once again making Trapping climate pollutant methane gas in porous carbons, scientists have renewed their efforts to understand how to best limit its effects. For example, sequestrating short-lived climate pollutants, such as methane and black carbon, yields much faster reductions in global warming compared to reductions in CO2.

To do so, it is essential to have a better grasp of the nature of physico-chemical properties of gases interacting with porous carbon.

Now, a team of chemical engineering researchers based in South Africa has established ways of accurately simulating methane adsorption and desorption in carbon with nanopores. These findings have been published by Matthew Lasich and Deresh Ramjugernath from the University of KwaZulu-Natal, Durban, South Africa, in EPJ B.

Alternative applications for such findings are relevant for future energy research, such as energy storage and the development of natural gas extraction methods.

Activated carbon, which is a type of carbon material containing numerous nanopores, is often used to adsorb gases in the energy sector.

The authors chose to use computational methods to study the influence of intermolecular interactions between different types of molecules - in this case, they simplified the approach by limiting it to methane and activated carbon - on adsorption. Their goal was to identify molecular interactions that could prevent such a process.

First, they employed a standard simulation approach, which was dubbed grand canonical Monte Carlo simulations. Parallel to that, they used a simple lattice gas model coupled with equations describing the intermolecular interactions, otherwise referred to as classical density functional theory.

They found that both approaches yielded qualitative agreement with previously published experimental data.

However, the second approach yielded results more in line with experimental data for gases adsorbed into carbon materials when equations are amended through simple corrections pertaining to energy levels, rather than by corrections related to the difference in the size of the various molecules involved.

M. Lasich and D. Ramjugernath (2015), Influence of unlike dispersive interactions on methane adsorption in graphite: A grand canonical Monte Carlo simulation and classical density functional theory study, Eur. Phys. J. B 88:313, DOI: 10.1140/epjb/e2015-60668-


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Springer
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CARBON WORLDS
Rapid plankton growth in ocean seen as sign of carbon dioxide loading
Baltimore MD (SPX) Dec 04, 2015
A microscopic marine alga is thriving in the North Atlantic to an extent that defies scientific predictions, suggesting swift environmental change as a result of increased carbon dioxide in the ocean, a study led a by Johns Hopkins University scientist has found. What these findings mean remains to be seen, however, as does whether the rapid growth in the tiny plankton's population is good ... read more


CARBON WORLDS
DXL-2: Studying X-ray emissions in space

Arianespace selected to launch Azerspace-2/Intelsat 38 satellites

"Cyg"-nificant Science Launching to Space Station

Flight teams prepare for LISA Pathfinder liftoff

CARBON WORLDS
Letter to Mars? Royal Mail works it out for British boy, 5

European payload selected for ExoMars 2018 surface platform

ExoMars has historical, practical significance for Russia, Europe

ExoMars prepares to leave Europe for launch site

CARBON WORLDS
Gaia's sensors scan a lunar transit

SwRI scientists explain why moon rocks contain fewer volatiles than Earth's

All-female Russian crew starts Moon mission test

Russian moon mission would need 4 Angara-A5V launches

CARBON WORLDS
New Horizons documents one rotation of Charon

Tyson weighs in on New Horizons' Pluto discoveries

Composite images compare sunlit faces of Pluto

Astronomers spot most distant object in the solar system

CARBON WORLDS
What kinds of stars form rocky planets

Half of Kepler's giant exoplanet candidates are false positives

Exiled exoplanet likely kicked out of star's neighborhood

Neptune-size exoplanet around a red dwarf star

CARBON WORLDS
Progress continues on test version of SLS Connection Hardware

Laser Power: Russia develops energy beam for satellite refueling

Blue Origin lands booster rocket

US Engine Dilemma: No Space Without Moscow

CARBON WORLDS
China's indigenous SatNav performing well after tests

China launches Yaogan-29 remote sensing satellite

China's scientific satellites to enter uncharted territory

China to launch Dark Matter Satellite in mid-December

CARBON WORLDS
Japan asteroid probe conducts 'Earth swing-by' in space quest

New law establishes ownership rights for space minerals

Who owns space

NEOWISE observes carbon gases in comets









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.