Subscribe free to our newsletters via your
. Space Travel News .




FARM NEWS
Tracking Sugar Movement in Plants
by Karen McNulty Walsh for BNL News
Upton NY (SPX) Apr 10, 2014


Brookhaven Lab plant scientist Benjamin Babst with corn and sorghum plants. Studies in model plants such as pea, like the one described below, could point to ways to improve these bioenergy crops.

A new study published in the Proceedings of the National Academy of Sciences by scientists at the University of Queensland, Australia, overturns a long-held theory in plant science. Researchers at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory who are co-authors on this paper conducted critical radiotracer studies that support the new theory that plant sugars play a dominant role in regulating branching at plant stems. While branching has relevance in agriculture, it is also very important in bioenergy crop production.

Brookhaven plant biologist Benjamin Babst and Brittany Wienclaw, who was a summer intern as part of the DOE Science Undergraduate Laboratory Internship program at Brookhaven while working on her degree at the University of New Haven, conducted an essential experiment to verify that sugars play a key role in apical dominance and the regulation of plant bud growth.

The aim of their part of this study was to test if sugars produced in leaves via photosynthesis move downward through plants in greater quantities when shoot tips are removed, and quickly enough to trigger bud growth farther down.

To trace the sugars, the scientists first had to add a radioactive "tag" to these molecules. The tag they used was a positron-emitting isotope of carbon, carbon-11, incorporated into carbon dioxide. When they administered this labeled CO2 to plant leaves, the plants incorporated the radioactive carbon into sugars via photosynthesis. The scientists then tracked the labeled sugars throughout the plant using detectors placed along the plant stem.

The time taken for the 11C-labeled sugars to move between two detectors on upper and lower regions of the stem was used to calculate sugar transport speeds. The scientists also monitored how much sugar accumulated at different positions, including where previously dormant buds began to sprout in response to clipping the plants' apical shoots.

"We found that upon decapitation of the plant, there is a rapid increase in sugar delivery to the buds, which promotes bud outgrowth," Babst said. The sugars move about 100 times faster than auxin, a plant hormone previously believed to regulate bud growth. This finding supports the idea that sugar-not auxin-is the key signaling molecule for this immediate response to clipping.

"Auxin plays a secondary role later in the process," Babst said.

The Brookhaven experiment further supports the idea that the demand for sugar in intact, actively growing apical shoots limits the availability of this nutrient to the rest of the plant, thus normally keeping lower branch bud growth in check.

"Only a few labs in the world have the capability, using the carbon-11 radioisotope, to do the type of experiment that we did to see rapid changes in carbon allocation immediately following a treatment, such as shoot tip removal," Babst said.

"Ben's work was critical for this study," said Christine Beveridge of the University of Queensland, Australia, who was the lead author on the paper. "His finding that sugars move at 150 cm per hour along the stem is amazing. The technique available in his lab is truly first class and an invaluable resource for plant scientists worldwide."

Brookhaven's role in this research was funded by the U.S. Department of Energy's Office of Science, which has an ongoing interest in furthering understanding of plant functions that have relevance to generating bioenergy.

For example, said Babst, "Branching has a big impact on the display of a plant's leaves to capture sunlight, like arrays of solar panels. Branching can also enhance or hurt the performance of plants growing amongst competitors. And the amount of branching also influences how much biomass a plant has-of particular interest because stems represent the bulk of the biomass that we can harvest for biofuels."

Understanding the factors that influence branching in the pea plants used in this study may offer valuable insights to help optimize the growth of bioenergy grasses such as switchgrass and sorghum-where, because the buds and shoot tips are inaccessible without damaging the plant and changing function, it would be impossible to tease out these details.

Scientific paper: "Sugar demand, not auxin, is the initial regulator of apical dominance"

.


Related Links
Brookhaven National Laboratory
Farming Today - Suppliers and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





FARM NEWS
The tiniest greenhouse gas emitters
Vienna, Austria (SPX) Apr 09, 2014
Climate feedbacks from decomposition by soil microbes are one of the biggest uncertainties facing climate modelers. A new study from the International Institute for Applied Systems Analysis (IIASA) and the University of Vienna shows that these feedbacks may be less dire than previously thought. The dynamics among soil microbes allow them to work more efficiently and flexibly as they break ... read more


FARM NEWS
EUTELSAT 3B Mission Status Update

Soyuz ready for Sentinel-1A satellite launch

Boeing wins contract to design DARPA Airborne Satellite Launch

Arianespace's seventh Soyuz mission from French Guiana is readied for liftoff next week

FARM NEWS
Health risks of Mars mission would exceed NASA limits

Mars and Earth move closer together this month

The Opposition of Mars

Mars yard ready for Red Planet rover

FARM NEWS
Take the Plunge: LADEE Impact Challenge

Land a Lunar Laser Reflector Now!

New research finds 'geologic clock' that helps determine moon's age

Misleading mineral may have resulted in overestimate of water in moon

FARM NEWS
Dwarf planet 'Biden' identified in an unlikely region of our solar system

Planet X myth debunked

WISE Finds Thousands Of New Stars But No Planet X

New Horizons Reaches the Final 4 AU

FARM NEWS
Lick's Automated Planet Finder: First robotic telescope for planet hunters

Space Sunflower May Help Snap Pictures of Planets

NRL Researchers Detect Water Around a Hot Jupiter

UK joins the planet hunt with Europe's PLATO mission

FARM NEWS
SLS Core Stage Model 'Sounds' Off for Testing

Advancing the Technology Readiness Of SLS Adaptive Controls

Airbus Defence and Space to cooperate with Snecma on electric propulsion

Boeing on Schedule to Deliver World's First All-Electric Satellites

FARM NEWS
China launches experimental satellite

Tiangong's New Mission

"Space Odyssey": China's aspiration in future space exploration

China to launch first "space shuttle bus" this year

FARM NEWS
Dawn draws ever closer to dwarf planet Ceres

Cosmic collision creates mini-planet with rings

Hubble Space Telescope Spots Mars-Bound Comet Sprout Multiple Jets

Comet lander awakes from long hibernation




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.