Space Travel News  
STELLAR CHEMISTRY
Titan helps researchers explore explosive star scenarios
by Staff Writers
Oak Ridge TN (SPX) Dec 09, 2015


"Outflows" (red), regions where plumes of hot gas escape the intense nuclear burning at a star's surface, form at the onset of convection in the helium shell of some white dwarf stars. This visualization depicts early convection on the surface of white dwarf stars of different masses. Image courtesy Adam Jacobs, Stony Brook University. For a larger version of this image please go here.

Exploding stars may seem like an unlikely yardstick for measuring the vast distances of space, but astronomers have been mapping the universe for decades using these stellar eruptions, called supernovas, with surprising accuracy.

Type Ia supernovas--exploding white dwarf stars--are considered the most reliable distance markers for objects beyond our local group of galaxies. Because all Type Ia supernovas give off about the same amount of light, their distance can be inferred by the light intensity observed from Earth.

These so-called standard candles are critical to astronomers' efforts to map the cosmos. It's been estimated that Type Ia supernovas can be used to calculate distances to within 10 percent accuracy, good enough to help scientists determine that the expansion of the universe is accelerating, a discovery that garnered the Nobel Prize in 2011.

But despite their reputation for uniformity, exploding white dwarfs contain subtle differences that scientists are working to explain using supercomputers.

A team led by Michael Zingale of Stony Brook University is exploring the physics of Type Ia supernovas using the Titan supercomputer at the US Department of Energy's (DOE's) Oak Ridge National Laboratory. Titan is the flagship machine of the Oak Ridge Leadership Computing Facility (OLCF), a DOE Office of Science User Facility located at ORNL. The team's latest research focuses on a specific class of Type Ia supernovas known as double-detonation supernovas, a process by which a single star explodes twice.

This year, the team completed a three-dimensional (3-D), high-resolution investigation of the thermonuclear burning a double-detonation white dwarf undergoes before explosion. The study expands upon the team's initial 3-D simulation of this supernova scenario, which was carried out in 2013.

"In 3-D simulations we can see the region of convective burning drill down deeper and deeper into the star under the right conditions," said Adam Jacobs, a graduate student on Zingale's team. "Higher mass and more burning force the convection to be more violent. These results will be useful in future studies that explore the subsequent explosion in three-dimensional detail."

By capturing the genesis of a Type Ia supernova, Zingale's team is laying the foundation for the first physically realistic start-to-finish, double-detonation supernova simulation. Beyond capturing the incredible physics of an exploding star, the creation of a robust end-to-end model would help astronomers understand stellar phenomena observed in our night sky and improve the accuracy of cosmological measurements.

These advances, in addition to helping us orient ourselves in the universe, could shed light on some of humanity's biggest questions about how the universe formed, how we came to be, and where we're going.

An Explosive Pairing
All Type Ia supernovas begin with a dying star gravitationally bound to a stellar companion. White dwarfs are the remnants of Sun-like stars that have spent most of their nuclear fuel. Composed mostly of carbon and oxygen, white dwarfs pack a mass comparable to that of the Sun in a star that's about the size of the Earth.

Left to its own devices, a lone white dwarf will smolder into darkness. But when a white dwarf is paired with a companion star, a cosmic dance ensues that's destined for fireworks.

To become a supernova, a white dwarf must collide with or siphon off the mass of its companion. The nature of the companion--perhaps a Sun-like star, a red giant star, or another white dwarf--and the properties of its orbit play a large role in determining the supernova trigger.

In the classic setup, known as the single-degenerate scenario, a white dwarf takes on the maximum amount of mass it can handle--about 1.4 times the mass of the Sun, a constraint known as the Chandrasekhar limit. The additional mass increases pressure within the white dwarf's core, reigniting nuclear fusion. Heat builds up within the star over time until it can no longer escape the star's surface fast enough. A moving flame front of burning gases emerges, engulfing the star and causing its explosion.

This model gave scientists a strong explanation for the uniformity of Type Ia supernovas, but further tests and observational data gathered by astronomers suggested there was more to the story.

"To reach the Chandrasekhar limit, a white dwarf has to gain mass at just the right rate so that it grows without losing mass, for example by triggering an explosion," Jacobs said. "It's difficult for the classic model to explain all we know today. The community is more and more of the belief that there are going to be multiple progenitor systems that lead to a Type Ia system."

The double-detonation scenario, a current focus of Zingale's team, is one such alternative. In this model, a white dwarf builds up helium on its surface. The helium can be acquired in multiple ways: stealing hydrogen from a Sun-like companion and burning it into helium, siphoning helium directly from a helium white dwarf, or attracting the helium-rich core remnant of a dying Sun-like star. The buildup of helium on the white dwarf's surface can cause a detonation before reaching the Chandrasekhar limit. The force of this sub-Chandrasekhar detonation triggers a second detonation in the star's carbon-oxygen core.

"If you have a thick helium shell, the explosion doesn't look like a normal Type Ia supernova," Jacobs said. "But if the helium shell is very thin, you can get something that does."

To test this scenario, Zingale's team simulated 18 different double-detonation models using the subsonic hydrodynamics code MAESTRO. The simulations were carried out under a 50-million core-hour allocation on Titan, a Cray XK7 with a peak performance of 27 petaflops (or 27 quadrillion calculations per second), awarded through the Innovative and Novel Computational Impact on Theory and Experiment, or INCITE, program. DOE's Office of Nuclear Physics also supported the team's work.

By varying the mass of the helium shell and carbon-oxygen core in each model, MAESTRO calculated a range of thermonuclear dynamics that potentially could lead to detonation. Additionally, the team experimented with "hot" and "cold" core temperatures--about 10 million and 1 million degrees Celsius, respectively.

In three-dimensional detail, the team was able to capture the formation of "hot spots" on the sub-Chandrasekhar star's surface, regions where the star cannot shed the heat of burning helium fast enough. The simulations indicated that this buildup could lead to a runaway reaction if the conditions are right, Jacobs said.

"We know that all nuclear explosions depend on a star's temperature and density. The question is whether the shell dynamics of the double-detonation model can yield the temperature and density needed for an explosion," Jacobs said. "Our study suggests that it can."

Using the OLCF's analysis cluster Rhea, Zingale's team was able to visualize this relationship for the first time.

Bigger and Better
Before translating its findings to the next step of double detonation, called the ignition-to-detonation phase, Zingale's team is upgrading MAESTRO to calculate more realistic physics, an outcome that will enhance the fidelity of its simulations. On Titan, this means equipping the CPU-only code to leverage GPUs, which are highly parallel, highly efficient processors that can take on heavy calculation loads.

Working with the OLCF's Oscar Hernandez, the team was able to offload one of MAESTRO's most demanding tasks: tracking stars' nucleus-merging, energy-releasing process called nucleosynthesis. For the double-detonation problem, MAESTRO calculates a network of three elements--helium, carbon, and oxygen. By leveraging the GPUs, Zingale's team could increase that number to around 10. Early efforts to program the OpenACC compiler directives included in the PGI compiler indicated a speedup of around 400 percent was attainable for this part of the code.

The GPU effort benefits the team's investigation of not only Type Ia supernovas but also other astrophysical phenomena. As part of its current INCITE proposal, Zingale's team is exploring Type I x?ray bursts, a recurring explosive event triggered by the buildup of hydrogen and helium on the surface of a neutron star, the densest and smallest type of star in the universe.

"Right now our reaction network for x-ray bursts includes 11 nuclei. We want to go up to 40. That requires about a factor of 16 more computational power that only the GPUs can give us," Zingale said.

Maximizing the power of current-generation supercomputers will position codes like MAESTRO to better take advantage of the next generation of machines. Summit, the OLCF's next GPU-equipped leadership system, is expected to deliver at least five times the performance of Titan.

"Ultimately, we hope to understand how convection behaves in these stellar systems," Zingale said, "Now we want to do bigger and better, and Titan is what we need to achieve that."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Oak Ridge National Laboratory
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Radio Shadow Reveals Tenuous Cosmic Gas Cloud
Washington DC (SPX) Dec 08, 2015
Astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) have discovered the most tenuous molecular gas ever observed. They detected the absorption of radio waves by gas clouds in front of bright radio sources. This radio shadow revealed the composition and conditions of diffuse gas in the Milky Way galaxy. To calibrate its systems, ALMA looks at objects emitting strong ra ... read more


STELLAR CHEMISTRY
Virgin Galactic Welcomes 'Cosmic Girl' To Fleet Of Space Access Vehicles

Orbital cargo ship blasts off toward space station

45th Space Wing supports NASA's Orbital ATK CRS-4 launch

DXL-2: Studying X-ray emissions in space

STELLAR CHEMISTRY
Mars Mission Team Addressing Vacuum Leak on Key Science Instrument

Letter to Mars? Royal Mail works it out for British boy, 5

European payload selected for ExoMars 2018 surface platform

ExoMars has historical, practical significance for Russia, Europe

STELLAR CHEMISTRY
Gaia's sensors scan a lunar transit

SwRI scientists explain why moon rocks contain fewer volatiles than Earth's

All-female Russian crew starts Moon mission test

Russian moon mission would need 4 Angara-A5V launches

STELLAR CHEMISTRY
Rotational movies of Pluto and Charon

New Visualization of Space Environment at Pluto

New Horizons' catches a wandering Kuiper Belt Object not far off

Pluto surface details revealed in best images yet

STELLAR CHEMISTRY
What kinds of stars form rocky planets

Half of Kepler's giant exoplanet candidates are false positives

Exiled exoplanet likely kicked out of star's neighborhood

Neptune-size exoplanet around a red dwarf star

STELLAR CHEMISTRY
NASA Marshall Prepares for SLS Foam Testing

LISA Pathfinder carries advanced NASA thruster tech

Bezos takes big step towards reusable commercial space flight

Progress continues on test version of SLS Connection Hardware

STELLAR CHEMISTRY
China's indigenous SatNav performing well after tests

China launches Yaogan-29 remote sensing satellite

China's scientific satellites to enter uncharted territory

China to launch Dark Matter Satellite in mid-December

STELLAR CHEMISTRY
New US space mining law to spark interplanetary gold rush

Robot arm simulates close approach of ESA's asteroid mission

Dawn spiraling in towards Ceres

Japan asteroid probe conducts 'Earth swing-by' in space quest









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.