Space Travel News  
ENERGY TECH
Tiny double accelerator recycles energy
by Staff Writers
Hamburg, Germany (SPX) Mar 23, 2020

Proof of concept for cascaded terahertz accelerator using long pulses. The mini-accelerator uses terahertz radiation that can be recycled for a second stage of acceleration.

A team of DESY scientists has built a miniature double particle accelerator that can recycle some of the laser energy fed into the system to boost the energy of the accelerated electrons a second time. The device uses narrowband terahertz radiation which lies between infrared and radio frequencies in the electromagnetic spectrum, and a single accelerating tube is just 1.5 centimetres long and 0.79 millimetres in diameter. Dongfang Zhang and his colleagues from the Center for Free-Electron laser Science (CFEL) at DESY present their experimental accelerator in the journal Physical Review X.

The miniature size of the device is possible due to the short wavelength of terahertz radiation. "Terahertz-based accelerators have emerged as promising candidates for next-generation compact electron sources," explains Franz Kartner, Lead Scientist at DESY and head of the CFEL group that built the device.

"Scientists have successfully experimented with terahertz accelerators before, which could enable applications where large particle accelerators are just not feasible or necessary. "However, the technique is still in an early stage, and the performance of experimental terahertz accelerators has been limited by the relatively short section of interaction between the terahertz pulse and the electrons," says Kartner.

For the new device, the team used a longer pulse comprising many cycles of terahertz waves. This multicycle pulse significantly extends the interaction section with the particles. "We feed the multicycle terahertz pulse into a waveguide that is lined with a dielectric material", says Zhang.

Within the waveguide, the pulse's speed is reduced. A bunch of electrons is shot into the central part of the waveguide just in time to travel along with the pulse. "This scheme increases the interaction region between the terahertz pulse and the electron bunch to the centimetre range - compared to a few millimetres in earlier experiments," reports Zhang.

The device did not produce a large acceleration in the lab. However, the team could prove the concept by showing that the electrons gain energy in the waveguide. "It is a proof of concept. The electrons' energy increased from 55 to about 56.5 kilo electron volts," says Zhang. "A stronger acceleration can be achieved by using a stronger laser to generate the terahertz pulses."

The set-up is mainly designed for the non-relativistic regime, meaning the electrons have speeds that are not so close to the speed of light. Interestingly, this regime enables a recycling of the terahertz pulse for a second stage of acceleration. "Once the terahertz pulse leaves the waveguide and enters the vacuum, its speed is reset to the speed of light," explains Zhang.

"This means, the pulse overtakes the slower electron bunch in a couple of centimetres. We placed a second waveguide at just the right distance that the electrons enter it together with the terahertz pulse which is again slowed down by the waveguide. In this way, we generate a second interaction section, boosting the electrons' energies further."

In the lab experiment, only a small fraction of the terahertz pulse could be recycled this way. But the experiment shows that recycling is possible in principle, and Zhang is confident that the recycled fraction can be substantially increased. Nicholas Mattlis, senior scientist and the team leader of the project in the CFEL group, emphasises: "Our cascading scheme will greatly lower the demand on the required laser system for electron acceleration in the non-relativistic regime, opening new possibilities for the design of terahertz-based accelerators."

The work is funded by the EU Synergy Grant AXSIS (frontiers in Attosecond X-ray Science: Imaging and Spectroscopy) at CFEL. CFEL is a joint venture of DESY, the University of Hamburg and the Max Planck Society.

DESY is one of the world's leading particle accelerator centres and investigates the structure and function of matter - from the interaction of tiny elementary particles and the behaviour of novel nanomaterials and vital biomolecules to the great mysteries of the universe. The particle accelerators and detectors that DESY develops and builds at its locations in Hamburg and Zeuthen are unique research tools.

They generate the most intense X-ray radiation in the world, accelerate particles to record energies and open up new windows onto the universe. DESY is a member of the Helmholtz Association, Germany's largest scientific association, and receives its funding from the German Federal Ministry of Education and Research (BMBF) (90 per cent) and the German federal states of Hamburg and Brandenburg (10 per cent).

Research Report: "Cascaded Multi-cycle terahertz driven ultrafast electron acceleration and manipulation"


Related Links
Deutsches Elektronen-Synchrotron Desy
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Geothermal energy: Unlimited renewable energy for our homes
Berlin, Germany (SPX) Mar 18, 2020
Geothermal energy is a renewable energy source that is available everywhere, notwithstanding changes in sunlight, wind, or ocean currents. The Earth's reservoirs of steam and hot water can be tapped to heat and cool buildings directly. In order to make the technology needed more affordable, and further improve its efficiency, seven countries, funded by the EU, have joined forces in order to reduce its cost by a quarter. The project is reaching its final stage and their first results are promising. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
ENERGY TECH
ExoMars to take off for the Red Planet in 2022

Organic molecules discovered by Curiosity Rover consistent with early life on Mars

Moreux Crater on Mars offers evidence of dunes and glacial processes

Virginia Middle School names NASA's next Mars rover Perseverance

ENERGY TECH
NASA selects first science instruments to send to Lunar Gateway

UNM scientists find Earth and moon not identical oxygen twins

Join the Artemis Generation

China's lunar rover travels nearly 400 meters on moon's far side

ENERGY TECH
Researchers find new minor planets beyond Neptune

Ultraviolet instrument delivered for ESA's Jupiter mission

One Step Closer to the Edge of the Solar System

TRIDENT Mission Concept Selected by NASA's Discovery Program

ENERGY TECH
Salmon parasite is world's first non-oxygen breathing animal

Observed: An exoplanet where it rains iron

Scientists have discovered the origins of the building blocks of life

ESO telescope observes exoplanet where it rains iron

ENERGY TECH
Aerojet Rocketdyne installs rocket motor casting bell as Camden rocket motor facility nears completion

ESA and European Commission preorder four more Ariane 6 launches

NASA's SLS moon rocket is 30 percent over budget, report says

SpaceX 'gunning' for May launch of astronauts from Florida

ENERGY TECH
China's Yuanwang-5 sails to Pacific Ocean for space monitoring mission

Construction of China's space station begins with start of LM-5B launch campaign

China Prepares to Launch Unknown Satellite Aboard Long March 7A Rocket

China's Long March-5B carrier rocket arrives at launch site

ENERGY TECH
Puzzle about nitrogen solved thanks to cometary analogues

Bennu's boulders shine as beacons for NASA's OSIRIS-REx

Over 9,000 asteroids feasible for mining may help ignite new space race

Fire from the sky









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.