Subscribe free to our newsletters via your
. Space Travel News .




TECH SPACE
The taming of the shrew
by Staff Writers
Cologne, Germany (SPX) Mar 23, 2015


This animation illustrates the extreme fluxionality of the CH5+ molecule. The black ball in the middle is the carbon nucleus, and the red and white balls are hydrogen nuclei. The blue clouds symbolize the binding electron pairs. Image courtesy Dominik Marx, Ruhr-Universitat Bochum, www.theochem.rub.de/go/ch5p.html.

CH5+, formed by adding a proton (H+) to the well-known methane (CH4) molecule, is the prototype of fluxional molecules. In contrast to common molecules, which are depicted as a rigid structure consisting of balls (atoms) and sticks (chemical bonds), the five hydrogen nuclei in CH5+ can move quite freely around the carbon nucleus.

It is thus constantly in motion, even at an extremely low temperature. Bonds are broken and reformed all the time, and therefore the simple model of balls and sticks does not apply. There has thus been a long debate whether CH5+ has a structure at all.

This extraordinary fluxional behavior is reflected in the spectra of CH5+. Usually such spectra are recorded in the lab to characterize and identify molecules. With the help of suitable theoretical models, the vibrational spectra can yield information about bond strengths and molecular structure.

For CH5+, however, the hitherto known spectra have been so chaotic that not a single of the many hundred vibrational transitions could be understood or assigned. This has been considered one of the last mysteries of molecular physics.

By developing and applying new ion trap experiments, physicists from the University of Cologne have now succeeded in storing a pure sample of CH5+ ions and cooling it down to a temperature close to absolute zero. With the help of a so-called frequency comb, the vibrational transitions could be measured with high accuracy, leading to a reconstruction of the lowest energy levels.

This very technical approach was necessary due to the complete lack of theoretical models for this exceptional molecule. The results are thus based only on the experimental data and the fundamental principle of quantum mechanics, according to which the observed vibrational transitions are based on a scheme of discrete energy levels.

Surprisingly, the results are in accordance with the simple notion that the five hydrogen nuclei can move quite freely around the central carbon nucleus, with their distance to it being more or less fixed. Whether this simple picture is valid will have to be tested in further investigations.

In any case, the highly accurate data will challenge future theoretical models to interpret the discovered energy levels. The entire class of fluxional molecules will profit from these developments.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Cologne
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Many plastics labeled 'biodegradable' don't break down as expected
Washington DC (SPX) Mar 23, 2015
Plastic products advertised as biodegradable have recently emerged, but they sound almost too good to be true. Scientists have now found out that, at least for now, consumers have good reason to doubt these claims. In a new study appearing in the ACS journal Environmental Science and Technology, plastics designed to degrade didn't break down any faster than their more conventional counterp ... read more


TECH SPACE
Soyuz Installed at Baikonur, Expected to Launch Wednesday

NASA Awards Launch Services Contract for Solar Probe Plus Mission

Payload integration is underway for Soyuz' Galileo passengers

Parallel launcher and payload prep puts Soyuz on track for March 27 launch

TECH SPACE
Could Water Have Carved Channels On Mars Half A Million Years Ago?

MARSDROP Microprobes Could Expand Spacecraft Mission Capabilities

NASA Spacecraft Detects Aurora and Mysterious Dust Cloud around Mars

Irish Mars trip finalist casts doubt on project

TECH SPACE
Extent of Moon's giant volcanic eruption is revealed

Yutu Changes Everything We Thought We Knew About Our Moon

Extent of moon's giant volcanic eruption is revealed

NASA's LRO Spacecraft Finds March 17, 2013 Impact Crater and More

TECH SPACE
Science Shorts: Why Pluto?

Pluto Science, on the Surface

Science Shorts: How Big Is Pluto's Atmosphere?

New Horizons Spots Small Moons Orbiting Pluto

TECH SPACE
Some habitable exoplanets could experience wildly unpredictable climates

Scientists: Nearby Earth-like planet isn't just 'noise'

'Habitable' planet GJ 581d previously dismissed as noise probably does exist

Exorings on the Horizon

TECH SPACE
NASA's Space Launch System Booster Passes Major Ground Test

Replacing Russian Rocket Engine to Take 7 Years

Morpheus Project wins AES Innovation Award

Booster Temps Will be Just Right for Major Ground Test

TECH SPACE
China's Yutu rover reveals Moon's "complex" geological history

China's Space Laboratory Still Cloaked

China has ability but no plan for manned lunar mission: expert

Tianzhou-1 cargo ship to dock with space lab in 2016

TECH SPACE
Chilly Philae still slumbering, says comet mission

Other Asteroids Contributed Elusive Olivine to Vesta

Rosetta: OSIRIS detects hints of ice in the comet's neck

Desktop App has potential to increase asteroid detection




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.