Subscribe free to our newsletters via your
. Space Travel News .




FLORA AND FAUNA
The secret to an effortless, split-second slime attack
by Staff Writers
Boston MA (SPX) Mar 23, 2015


This is a lateral view of the attack by a Peripatus Solozanoi. Image courtesy of Cristiano Sampaio-Costa, Bernal Morera-Brenes, Julian Monge-Najera, and Andres Concha. For a larger version of this image please go here.

The velvet worm is a slow-moving, unassuming creature. With its soft body, probing antennae, and stubby legs, it looks like a slug on stilts as it creeps along damp logs in tropical climates.

But it has a secret weapon. In the dark of night, when an unsuspecting cricket or termite crosses its path, the worm unleashes an instantaneous torrent of slime. Two fine jets of the gluey substance spray out of openings on its head, oscillating in all directions to cast a sticky net that entraps prey and stops it in its tracks.

Captivated, so to speak, by the worm's split-second attack, researchers from Harvard School of Engineering and Applied Sciences (SEAS) and from universities in Chile, Costa Rica, and Brazil have been studying the creature from all angles. How, they asked, does such a slow, neurologically simple worm execute such a rapid and perfectly aimed movement?

By applying new insights from anatomy, mathematics, experimental physics, and fluid dynamics, they now have an answer - published in Nature Communications - and the findings could inspire new microfluidic devices.

Imagine a large syringe equipped, at its narrow tip, with an elastic tube shaped like the neck of a bendy drinking straw. That is apparently the velvet worm's slime-shooting apparatus, from its tail end - where the slime is produced and stored in a reservoir - to a pair of tiny nozzles called papillae on its head.

Given this structure, a slow and gentle squeeze on the reservoir is all it takes to eject the slime with great speed and force. Most importantly, the shape and elasticity of the papillae ensure that as the slime exits, it sprays in all directions, like water gushing through a flailing garden hose.

"The geometry of the system allows the worm to squirt fast and cover a wide area. That's the magic," says lead author Andres Concha, formerly a postdoctoral fellow at Harvard SEAS and now an assistant professor at Adolfo Ibanez University in Chile.

But it's actually not the whole story, as Concha explains. A garden hose is much larger than the tube inside a velvet worm's papillae. To get the flailing-hosepipe effect within such minuscule passages, which range in diameter from 50 to 200 microns, the worm relies on the elasticity and corrugated shape of its papillae. These features lower the fluid velocity necessary to shake the tube.

By identifying the features of the anatomy and material structure that enable the velvet worm to produce wide-spraying jets, the researchers have characterized a new type of flexible microfluidic system that they say could be used to produce fine droplets of liquid or fibrous nets, or to mix together several substances in laboratory or industrial settings.

Concha and coauthor Paula Mellado (also an assistant professor at Adolfo Ibanez University in Chile) were both Kavli Scholars at Harvard SEAS, studying topics relating to fluid dynamics, when the velvet worm project launched.

"After watching the David Attenborough film Life in the Undergrowth with some high-speed footage of the worm's slime jet, I suggested that an elastic-hydrodynamic instability of the nozzle could be a simpler solution to creating a chaotic jet, rather than muscle control," explains coauthor L. Mahadevan, the Lola England de Valpine Professor of Applied Mathematics at Harvard SEAS and a Professor of Organismic and Evolutionary biology and of Physics in Harvard's Faculty of Arts and Sciences.

"Our work shows that this is indeed the case, and chalks up one more example of how evolution has co-opted a simple physical principle for a behavioral response."

Mahadevan is also a Core Faculty Member at the Wyss Institute for Biologically Inspired Engineering, a Faculty Associate of Harvard University Center for the Environment, and a member of the Kavli Institute for Bionano Science and Technology.

The unusual velvet worms present a host of new questions for future research.

"There are many cool properties of the glue that we need to explore," Concha says. "If you put your fingers close to the mouth of the worm and you get some glue on your fingers, you wait seven seconds and you're stuck. So one ambition is to be able to generate a synthetic glue like that, with biotechnological applications. I think there is some chemistry that we have to learn from the worm."

The diversity of the velvet worms, which make up the genus Onychophora, also poses the question of how the squirting mechanism can have evolved to work in worms that vary greatly in size.

"That's a great biological question," Concha says. "By experience, we know that it works for all of these worms. Now, how they adapt the materials and the inner diameter of the hole inside the papillae, I don't know. It's very impressive. Even for babies, it works. You have a gigantic worm that's eight or nine inches long and the baby is one inch, and already the mechanism is working."

While squirting mechanisms are common among animals, anything other than a straightforward arc of liquid typically requires an active movement and some degree of control. The range of approaches to that problem within the animal kingdom requires continued research.

"Archer fish throw a jet of water, and it just follows a parabolic trajectory. Spitting cobras actively move their head to spray the poor fellow who is in front. And there are other cases - for example, spitting spiders - where the mechanism is unclear," Concha says.

Fortunately, he has access to the venomous spitting spiders at home in Chile, where he plans to study them further. "Some biologists have posed the question, is this elasticity or is there any active mechanism? From what is in the literature up to now, I don't have an answer, so spitting spiders are a nice thing to look forward to."

Additional coauthors included Bernal Morera-Brenes, a biologist at the Universidad Nacional de Costa Rica; Cristiano Sampaio Costa, of the Universidade de Sao Paulo in Brazil; and Julian Monge-Najera, a tropical biologist at the Universidad de Costa Rica.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Harvard University
Darwin Today At TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








FLORA AND FAUNA
Scientists discover gecko secret
Cairns, Australia (SPX) Mar 23, 2015
In a world first, a research team including James Cook University scientists has discovered how geckos manage to stay clean, even in dusty deserts. The process, described in Interface, the prestigious journal of the Royal Society, may also turn out to have important human applications. JCU's Professor Lin Schwarzkopf said the group found that tiny droplets of water on geckos, for ins ... read more


FLORA AND FAUNA
Soyuz Installed at Baikonur, Expected to Launch Wednesday

Kosmotras Denies Reports of Suspending Russian-Ukrainian Launches

NASA Awards Launch Services Contract for Solar Probe Plus Mission

Payload integration is underway for Soyuz' Galileo passengers

FLORA AND FAUNA
Could Water Have Carved Channels On Mars Half A Million Years Ago?

MARSDROP Microprobes Could Expand Spacecraft Mission Capabilities

NASA Spacecraft Detects Aurora and Mysterious Dust Cloud around Mars

Irish Mars trip finalist casts doubt on project

FLORA AND FAUNA
Extent of Moon's giant volcanic eruption is revealed

Yutu Changes Everything We Thought We Knew About Our Moon

Extent of moon's giant volcanic eruption is revealed

NASA's LRO Spacecraft Finds March 17, 2013 Impact Crater and More

FLORA AND FAUNA
Name the features on Pluto and its moon Charon

Science Shorts: Why Pluto?

Pluto Science, on the Surface

Science Shorts: How Big Is Pluto's Atmosphere?

FLORA AND FAUNA
SOFIA Finds Missing Link Between Supernovae and Planet Formation

ESA's CHEOPS Satellite: The Pharaoh of Exoplanet Hunting

Some habitable exoplanets could experience wildly unpredictable climates

Scientists: Nearby Earth-like planet isn't just 'noise'

FLORA AND FAUNA
Sierra Nevada Corporation Unveils New Dream Chaser Cargo System

NASA's Space Launch System Booster Passes Major Ground Test

Replacing Russian Rocket Engine to Take 7 Years

Morpheus Project wins AES Innovation Award

FLORA AND FAUNA
China's Yutu rover reveals Moon's "complex" geological history

China's Space Laboratory Still Cloaked

China has ability but no plan for manned lunar mission: expert

Tianzhou-1 cargo ship to dock with space lab in 2016

FLORA AND FAUNA
Rosetta makes first detection of molecular nitrogen at a comet

Unusual Asteroid Suspected of Spinning to Explosion

Chilly Philae still slumbering, says comet mission

Other Asteroids Contributed Elusive Olivine to Vesta




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.