Space Travel News  
TECTONICS
The origin of the Andes unraveled
by Staff Writers
Amsterdam, Netherlands (SPX) Dec 18, 2017


The size of the subduction zone, some 7000 km and thereby the largest in the world, is crucial for mountain building. What else came out? The first signs of crustal shortening and mountain formation started already in the mid Cretaceous, some 120-80 million years ago.

Why do the Andes exist? Why is it not a place of lowlands or narrow seas? Wouter Schellart, a geophysicist at the Vrije Universiteit Amsterdam, has been pondering these questions for more than a decade. Now, he has found the answers using an advanced computer model. "It's a matter of enormous size, longevity and great depth", he said. "These aspects made the Andes the longest and second-highest mountain belt in the world."

All the other major mountain belts on Earth, such as the Himalaya and the Alps, were formed due to colliding continents. But there are no colliding continents in the Andes; rather, the Andes are located at a so-called subduction zone, a place where an oceanic tectonic plate sinks below another plate (in this case the Nazca plate sinking below the South American plate) into the Earth's interior, the mantle.

There are numerous other subduction zones on Earth, such as in Greece and Indonesia, but these locations are characterized by small seas (such as the Aegean Sea) and tropical lowlands, not massive mountain chains. So the big question is: Why did a massive mountain chain form in South America?

Andean evolution
Schellart's model, which took more than two years to complete on Australia's supercomputer Raijin, has reproduced the evolution of the South American subduction zone, from start to present (initiating some 200 million years ago and thereby the oldest subduction zone in the world), to investigate the origin of the Andes. What came out?

The size of the subduction zone, some 7000 km and thereby the largest in the world, is crucial for mountain building. What else came out? The first signs of crustal shortening and mountain formation started already in the mid Cretaceous, some 120-80 million years ago.

Before this time there were elongated narrow seas at the western edge of South America rather than mountains. Form the mid Cretaceous onwards the subduction zone was deep enough to induce large-scale flow in the deep mantle, down to 2900 km, the boundary between the Earth's mantle and core.

These flows dragged South America westward, causing the continent to collide with the subduction zone and thereby forming the Andes. Because the South American subduction zone is so wide, it provides much resistance to migrate laterally, in particular in the centre.

This is why the collisional forces between the South American continent and the subduction zone are largest in the centre, resulting in the highest mountains in the Central Andes and formation of the Altiplano, a high plateau at 4 km above sea level, but much lower mountains in the north and south.

Research paper

TECTONICS
Earthquakes in the Himalaya bigger than in the Alps because tectonic plates collide faster
Oxford UK (SPX) Dec 08, 2017
Earthquakes that happen in densely populated mountainous regions, such as the Himalaya, spell bigger earthquakes because of a fast tectonic-plate collision, according to a new study in Earth and Planetary Science Letters. Researchers from Geophysical Fluid Dynamics - ETH Zurich in Switzerland, say their findings give people a more complete view of the risk of earthquakes in mountainous regions. ... read more

Related Links
Vrije Universiteit Amsterdam
Tectonic Science and News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECTONICS
TECTONICS
Planting oxygen ensures a breath of fresh air

Designing future human space exploration on Hawaii's lava fields

Opportunity Comes to a Fork in the Road

Space program should focus on Mars, says editor of New Space

TECTONICS
Robot Moon Base: Beijing's New Lunar Landing Program

Thales Alenia Space signs 3 contracts for NASA's deep space exploration

Researchers analyze thousands of hours of Apollo mission audio

Will Trump send Americans to the Moon? Money talks: experts

TECTONICS
Does New Horizons' Next Target Have a Moon?

Juno probes the depths of Jupiter's Great Red Spot

New Horizons Corrects Its Course in the Kuiper Belt

Wrapping up 2017 one year out from MU69

TECTONICS
Life's building blocks observed in spacelike environment

NASA uses AI to uncover eighth planet circling distant star

No alien 'signals' from cigar-shaped asteroid: researchers

Two Super-Earths around red dwarf K2-18

TECTONICS
In first, SpaceX launches recycled rocket and spaceship

Russian space agency blames satellite loss on programming error

ArianeGroup signs contract with ESA for future Prometheus engine

Rocket Lab makes another attempt at rocket launch in New Zealand

TECTONICS
Nation 'leads world' in remote sensing technology

China plans for nuclear-powered interplanetary capacity by 2040

China plans first sea based launch by 2018

China's reusable spacecraft to be launched in 2020

TECTONICS
Initial results and data from observations of 'Oumuamua

Bright Areas on Ceres Suggest Geologic Activity

OSIRIS-REx cruising towards rendezvous with Asteroid Bennu

Research shows why meteroids explode before they reach Earth









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.