Space Travel News  
The Original Nanoworkout - Helping Carbon Nanotubes Get Into Shape

A carbon nanotube bundle before (left) and after (right) densification. Credit: Rensselaer/Liu
by Staff Writers
Troy NY (SPX) Jun 11, 2007
Researchers at Rensselaer Polytechnic Institute have developed a new method of compacting carbon nanotubes into dense bundles. These tightly packed bundles are efficient conductors and could one day replace copper as the primary interconnects used on computer chips and even hasten the transition to next-generation 3-D stacked chips.

Theoretical studies show that carbon nanotubes, if packed closely enough together, should be able to outperform copper as an electrical conductor. But because of the way carbon nanotubes are grown - in sparse nanoscale "forests" where carbon molecules compete for growth-inducing catalysts - scientists have been unable to successfully grow tightly packed bundles.

James Jiam-Qiang Lu, associate professor of physics and electrical engineering at Rensselaer, together with his research associate Zhengchun Liu, decided to investigate how to "densify" carbon nanotube bundles after they are already grown. He detailed the results of the post-growth densification project on June 6 at the Institute of Electrical and Electronics Engineers' International Interconnect Technology Conference (IITC) in Burlingame, Calif.

Lu's team discovered that by immersing vertically grown carbon nanotube bundles into a liquid organic solvent and allowing them to dry, the nanotubes pull close together into a dense bundle. Lu attributes the densification process to capillary coalescence, which is the same physical principle that allows moisture to move up a piece of tissue paper that is dipped into water.

The process boosts the density of these carbon nanotube bundles by five to 25 times. The higher the density, the better they can conduct electricity, Lu said. Several factors, including nanotube height, diameter, and spacing, affect the resulting density, Liu added. How the nanotubes are grown is also an important factor that impacts the resulting shape of the densified bundles.

Images of the experiment are more striking than any "before and after" photos of the latest fad diet. In one instance, Liu started with a carbon nanotube bundle 500 micrometers in diameter, shaped somewhat like a marshmallow, and dipped it into a bath of isopropyl alcohol. As the alcohol dried and evaporated, capillary forces drew the nanotubes closer together. Van Der Waals forces, the same molecular bonds that boost the adhesion of millions of setae on gecko toes and help the lizard defy gravity, ensure the nanotubes retain their tightly packed form.

The resulting bundle shrunk to a diameter of 100 micrometers, with a 25-fold increase in density. Instead of a marshmallow, it looked more like a carpenter's nail.

"It's a significant and critical step toward the realization of carbon nanotube interconnects with better performance than copper," Lu said of his research findings. "But there's still a lot of work to do before this technology can be integrated into industrial applications."

Despite his initial successes, Lu said the density results obtained are not ideal and carbon nanotubes would have to be further compacted before they can outperform copper as a conductor. A close-up photo, taken using a scanning electron microscope, reveals there are still large empty spaces between densified nanotubes. The research team is exploring various methods to achieve ever-higher density and higher quality of carbon nanotube bundles, he said.

Lu is confident that these densified carbon nanotubes, with their high conductivity, ability to carry high current density, and resistance to electromigration, will be key to the development of 3-D computer chips. Chips used today can only shrink so much smaller, as their flat surface must have enough room to accommodate scores of different components. But the semiconductor industry and academia are looking at ways to layer chip components into a vertical stack, which could dramatically shrink the size of the overall chip.

Densified carbon nanotubes, with their ends trimmed and polished, can be the basic building blocks for interconnects that would link the stacked layers of a 3-D computer chip, Lu said.

"Carbon nanotubes are one of the most promising materials for interconnects in 3-D integration," he said. Other potential applications of the densified nanotubes are high surface area electrodes for supercapacitors, fuel cell electrodes for hydrogen storage, heat dissipation materials for thermal conductors, and other situations that require high electrical, thermal, or mechanical performance.

Related Links
Rensselaer Polytechnic Institute
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Hammering A Diamond Anvil
Berkeley CA (SPX) May 10, 2007
Combining diamond anvils and powerful lasers, laboratory researchers have developed a technique that should be able to squeeze materials to pressures 100 to 1,000 times greater than possible today, reproducing conditions expected in the cores of supergiant planets. Until now, these pressures have only been available experimentally next to underground nuclear explosions.







  • Boston Harbor Angels Invests In XCOR Aerospace
  • Successful Design Review And Engine Test Bring Boeing X-51A Closer To Flight
  • ATK Conducts Successful Test Firing Of Space Shuttle Reusable Solid Rocket Motor
  • Progress Being Made On Next US Man-Rated Spacecraft

  • Dawn Spacecraft Never Damaged Set To Launch July 7
  • Proton-M Rocket With US Satellite To Lift Off July 7
  • Delta 2 Launch To Launch COSMO-SkyMed Satellite
  • Russia Launches Four Satellites Into Orbit For Globalstar

  • Two Atlantis Space Walkers Work On ISS Solar Arrays
  • Atlantis Shuttle Mission Lengthened For Repair Job
  • Astronauts Prepare For EVA Following Docking
  • NASA Sets Hubble Mission Launch For September 2008

  • Communications with computers running ISS oxygen, water resume
  • US Atlantis Astronauts Step Out On Space Walk
  • Third Pair Of Massive Solar Arrays To Be Launched To Space Station
  • Space Station Holed By Meteorite, Crew Complete EVA To Install Debris Shields

  • EADS To Offer Tourist Spacecraft By 2012
  • Stardust Memories As Space Becomes The Final Frontier In Funerals
  • Vignette Helps NASA Make Giant Leap To The Moon And Beyond
  • Star Trek Fans Beam Into Canadian Wild West

  • China Launches Satellite To Take TV Signal Nationwide
  • China Launches Communications Satellite SinoSat-3
  • China Aims To Launch Moon Probe This Year
  • China Approves Five-Year Space Development plan

  • Japanese Researchers Help Robots Brush Up Communication Skills
  • Guessing Robots Predict Their Environments For Better Navigation
  • Saving Robots To Save Battlefield Lives
  • Rescue Robot Tests To Offer Responders High-Tech Help

  • Wandering Poles May Explain Ups And Downs Of Ancient Mars Shoreline
  • Spirit Studies Layered Rocks At Home Plate
  • The Viability Of Methane-Producing Microorganisms In Simulated Martian Soils
  • Taking The Opportunity To Check New Driving Capabilities

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement