Space Travel News  
The Little Red Spot Of Jupiter Has Lots Of Winds Blowing

In this quasi-true-color view of Jupiter's Little Red Spot, generated using a New Horizons-LORRI mosaic in the red and green channels and a Hubble Space Telescope 410 nm map in the blue channel, the "LRS" appears with distinctly redder color than the south tropical disturbance to the north or the small oval to the southeast. This image appears in the June 2008 issue of the Astronomical Journal. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/HST
by Staff Writers
Laurel MD (SPX) May 23, 2008
Using data from NASA's New Horizons spacecraft and two telescopes at Earth, an international team of scientists has found that one of the solar system's largest and newest storms - Jupiter's Little Red Spot - has some of the highest wind speeds ever detected on any planet.

The New Horizons researchers combined observations from their Pluto-bound spacecraft, which flew past Jupiter in February 2007; data from the Hubble Space Telescope orbiting Earth, and the European Southern Observatory's Very Large Telescope, perched on an Atacama Desert mountain in Chile.

This is the first time that high resolution, close-up imaging of the Little Red Spot has been combined with powerful Earth-orbital and ground-based imagery made at ultraviolet through mid-infrared wavelengths.

Jupiter's "LRS" is an anticyclone, a storm whose winds circulate in the opposite direction to that of a cyclone - counterclockwise, in this case. It is nearly the size of Earth and as red as the similar, but larger and more well known, Great Red Spot (or GRS).

The dramatic evolution of the LRS began with the merger of three smaller white storms that had been observed since the 1930s. Two of these storms coalesced in 1998, and the combined pair merged with a third major Jovian storm in 2000. In late 2005 - for reasons still unknown - the combined storm turned red.

The new observations confirm that wind speeds in the LRS have increased substantially over the wind speeds in the precursor storms, which had been observed by NASA's Voyager and Galileo missions in past decades.

Researchers measured the latest wind speeds and directions using two image mosaics from New Horizons' telescopic Long Range Reconnaissance Imager (LORRI), taken 30 minutes apart in order to track the motion of cloud features.

New Horizons obtained the images from a distance of approximately 2.4 million kilometers (1.5 million miles) from Jupiter at a resolution of 14.4 kilometers (8.9 miles) per pixel. The LRS' maximum winds speeds of about 384 miles per hour (between 155 - 190 meters per second) far exceed the156 mile-per-hour threshold that would make it a Category 5 storm on Earth.

"This storm is still developing, and some of the changes remain mysterious," says Dr. Andrew Cheng of the Johns Hopkins University Applied Physics Laboratory (APL), Laurel, Md., who led the study team.

"This unique set of observations is giving us hints about the storm's structure and makeup; from this, we expect to learn much more about how these large atmospheric disturbances form on worlds across the solar system."

Jupiter's venerable Great Red Spot has decreased steadily in size over the past several decades. In addition, a rare "global upheaval" in Jupiter's atmosphere began before New Horizons visited last year.

This upheaval involved the disappearance of activity in the South Equatorial Belt (which left the GRS as an isolated storm), the appearance of a south tropical disturbance north of the Little Red Spot, and other spectacular cloud changes.

"This was a rare opportunity to combine observations from a powerful suite of instruments, as Jupiter will not be visited again by a spacecraft until 2016 at the earliest," says Cheng, whose team publishes its work in the June 2008 Astronomical Journal.

Scientists combined LORRI image maps of cloud motions with visible-color images from Hubble, and mid-infrared images from the Very Large Telescope.

The latter technique allows scientists to "see" thermal structure and dynamics beneath the visible cloud layers, because thermal infrared wavelengths (indicating heat) can pass through the higher clouds.

"The new observations confirm that the thermal structures, wind speeds, and cloud features of the LRS are very similar to those of the GRS," says Dr. Hal Weaver, a member of the study team from APL and the New Horizons project scientist.

"Both the LRS and the GRS extend into the stratosphere, to far higher altitudes than for the smaller storms on Jupiter."

The observations offer clues to the mystery of why the GRS, and now also the LRS, may be so red. The wind speeds and overall strength of the LRS increased substantially in the seven years between the Galileo and the New Horizons observations, during which the storm became red.

"This supports the idea that a common dynamical mechanism explains the reddening of the two largest anticyclonic systems on Jupiter, one possibility of which is that storm winds dredge up material from below," says Dr. Amy Simon-Miller of NASA's Goddard Space Flight Center, Greenbelt, Md.

In their report, the scientists also wonder about the future evolution of Jupiter's two giant storms. The LRS already rivals the steadily shrinking GRS in size and wind speed.

The new thermal and wind field observations hint at an interaction between the south tropical disturbance, the Little Red Spot, and a warm cyclonic region south of the LRS, forming a complex that could dwarf the Great Red Spot.

"The Great Red Spot may not always be the largest and strongest storm on Jupiter," says Dr. Glenn Orton of NASA's Jet Propulsion Laboratory, Pasadena, Calif. "Continued monitoring of Jupiter's constantly evolving atmosphere will surely yield more surprises."

Related Links
Johns Hopkins University Applied Physics Laboratory
Jupiter and its Moons
Explore The Ring World of Saturn and her moons
The million outer planets of a star called Sol
News Flash at Mercury



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Scientists Find Rings Of Jupiter Are Shaped In Shadow
College Park MD (SPX) May 02, 2008
Scientists from the University of Maryland and the Max-Planck Institute for Solar System Research in Germany appear to have solved a long-standing mystery about the cause of anomalies in Jupiter's gossamer rings. They report that a faint extension of the outermost ring beyond the orbit of Jupiter's moon Thebe, and other observed deviations from an accepted model of ring formation, result from the interplay of shadow and sunlight on dust particles that make up the rings.







  • North Carolina Students Win National Team America Rocketry Challenge
  • NASA Successfully Completes First Series Of Ares Engine Tests
  • NASA Awards Contract For Ares I Mobile Launcher
  • Russia's Energomash To Double Production Of Rocket Engines

  • Arianespace Completes The Assembly Of Another Ariane 5
  • Zenit Rocket Powers A Successful Sea Launch Campaign
  • Sea Launch Initiates Countdown For Launch Of Galaxy 18
  • Sweden Launches MASER 11 Sounding Rocket

  • NASA gives go-ahead for Discovery shuttle launch on May 31
  • Discovery's Launch Date Confirmed: May 31
  • STS-124 Astronauts Wrap Up Launch Rehearsal
  • Discovery's Payloads Installed

  • NASA: Space station view is good this week
  • NASA TV Airs High-Def Day In The Life Of An ISS Astronaut
  • Russian cargo ship docks with the ISS: report
  • MDA Receives Information Solution Contract With Boeing

  • Why Do Astronauts Suffer From Space Sickness
  • ESA And Space Tourism
  • NASA's 50th birthday marked in art exhibit
  • ESA Astronaut Recruitment Now Open

  • Suits For Shenzhou
  • China Launches New Space Tracking Ship To Serve Shenzhou VII
  • Three Rocketeers For Shenzhou
  • China's space development can pose military threat: Japan

  • Robot conducts Detroit orchestra
  • Canada rejects sale of space firm to US defense firm
  • The Future Of Robotic Warfare Part Two
  • Robot anaesthetist developed in France: doctor

  • Mars Express Support To Phoenix Landing
  • Phoenix Spacecraft On Course For May 25 Mars Landing
  • Heat-Sensing Camera Helps Phoenix Probe Land Safely On Mars
  • MDA Solution To Look For Clues Of Water Above And Below The Surface Of Mars

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement