Space Travel News  
The Gobbling Dwarf That Exploded

Left: artist's impression of the favoured configuration for the progenitor system of SN2006X before the explosion. The White Dwarf (on the right) accretes material from the Red Giant star, which is losing gas in the form of stellar wind (the diffuse material surrounding the giant). Only part of the gas is accreted by the White Dwarf, through a so-called accretion disk which surrounds the compact star. The remaining gas escapes the system and eventually dissipates into the interstellar medium. The Red Giant star has a radius about 100 times larger than our Sun, while the White Dwarf is about 100 times smaller than the Sun.

Right: Once the mass of the White Dwarf has reached a critical limit, a thermonuclear explosion completely disrupts the star, ejecting its material with velocities up to a tenth of the speed of light. Twenty days after the explosion, when the supernova reaches its maximum brightness, the ejected material has reached a size of roughly 450 times the distance from Earth to the Sun. The enormous amount of light emitted by the supernova passes through the surrounding material before being detected by us, thus revealing gas shells which were ejected by the Red Giant in the last few hundred years before the explosion. These density enhancements were produced either by fluctuations in the mass-loss rate of the Red Giant, or by small recurrent explosive episodes on the surface of the White Dwarf in the final phases of its existence.
by Staff Writers
Garching, Germany (SPX) Jul 17, 2007
VLT Provides Evidence for Type Ia Supernovae Scenario A unique set of observations, obtained with ESO's VLT, has allowed astronomers to find direct evidence for the material that surrounded a star before it exploded as a Type Ia supernova. This strongly supports the scenario in which the explosion occurred in a system where a white dwarf is fed by a red giant. Because Type Ia supernovae are extremely luminous and quite similar to one another, these exploding events have been used extensively as cosmological reference beacons to trace the expansion of the Universe.

However, despite significant recent progress, the nature of the stars that explode and the physics that governs these powerful explosions have remained very poorly understood.

In the most widely accepted models of Type Ia supernovae the pre- explosion white dwarf star orbits another star. Due to the close interaction and the strong attraction produced by the very compact object, the companion star continuously loses mass, 'feeding' the white dwarf. When the mass of the white dwarf exceeds a critical value, it explodes.

The team of astronomers studied in great detail SN 2006X, a Type Ia supernova that exploded 70 million light-years away from us, in the splendid spiral Galaxy Messier 100 (see ESO 08/06). Their observations led them to discover the signatures of matter lost by the normal star, some of which is transferred to the white dwarf.

The observations were made with the Ultraviolet and Visual Echelle Spectrograph (UVES), mounted at ESO's 8.2-m Very Large Telescope, on four different occasions, over a time span of four months. A fifth observation at a different time was secured with the Keck telescope in Hawaii. The astronomers also made use of radio data obtained with NRAO's Very Large Array as well as images extracted from the NASA/ESA Hubble Space Telescope archive.

"No Type Ia supernova has ever been observed at this level of detail for more than four months after the explosion," says Ferdinando Patat, lead author of the paper reporting the results in this week's issue of Science Express, the online version of the Science research journal. "Our data set is really unique."

The most remarkable findings are clear changes in the absorption of material, which has been ejected from the companion giant star. Such changes of interstellar material have never been observed before and demonstrate the effects a supernova explosion can have on its immediate environment. The astronomers deduce from the observations the existence of several gaseous shells (or clumps) which are material ejected as stellar wind from the giant star in the recent past.

"The material we have uncovered probably lies in a series of shells having a radius of the order of 0.05 light-years, or roughly 3 000 times the distance between Earth and the Sun", explains Patat. "The material is moving with a velocity of 50 km/s, implying that the material would have been ejected some 50 years before the explosion."

Such a velocity is typical for the winds of red giants. The system that exploded was thus most likely composed of a white dwarf that acted as a giant 'vacuum cleaner', drawing gas off its red giant companion. In this case however, the cannibal act proved fatal for the white dwarf. This is the first time that clear and direct evidence for material surrounding the explosion has been found.

"One crucial issue is whether what we have seen in SN 2006X represents the rule or is rather an exceptional case," wonders Patat. "But given that this supernova has shown no optical, UV and radio peculiarity whatsoever, we conclude that what we have witnessed for this object is a common feature among normal SN Ia. Nevertheless, only future observations will give us answers to the many new questions these observations have posed to us."

These results are reported in a paper in Science Express published on 12 July 2007 ("Detection of circumstellar material in a normal Type Ia Supernova", by F. Patat et al.).

The team is composed of F. Patat and L. Pasquini (ESO), P. Chandra and R. Chevalier (University of Virginia, USA), S. Justham, Ph. Podsiadlowski , and C. Wolf (University of Oxford, UK), A. Gal-Yam and J.D. Simon (California Institute of Technology, Pasadena, USA), I. A. Crawford (Birkbeck College London, UK), P.A. Mazzali, W. Hillebrandt, and N. Elias-Rosa (Max-Planck-Institute for Astrophysics, Garching, Germany), A.W.A. Pauldrach (Ludwig- Maximilians University, Munich, Germany), K. Nomoto (University of Tokyo, Japan), S. Benetti, E. Cappellaro, A. Renzini , F. Sabbadin, and M. Turatto (INAF-Osservatorio Astronomico, Padova, Italy), D.C. Leonard (San Diego State University, USA), and A. Pastorello (Queen's University Belfast, UK). P.A. Mazzali is also associated with INAF/ Trieste, Italy.

Related Links
ESO
Stellar Chemistry, The Universe And All Within It



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


X-Rays Provide A New Way To Investigate Exploding Stars
Paris, France (ESA) May 10, 2007
ESA's X-ray observatory XMM-Newton has revealed a new class of exploding stars - where the X-ray emission 'lives fast and dies young'. The identification of this particular class of explosions gives astronomers a valuable new constraint to help them model and understand stellar explosions.







  • NASA Awards Upper Stage Engine Contract For Ares Rockets
  • ATV Starts Journey To Kourou
  • Boeing To Bid For Ares I Instrument Unit Avionics Contract
  • Pratt And Whitney PW308 Engine To Power Virgin Galactic Suborbital Spaceship

  • Spaceway 3 Is Delivered To The Spaceport For Its Mid-August Ariane 5 Launch
  • Russian Space Firm Signs 14 Deals For Commercial Rocket Launches
  • Sea Launch To Resume Zenit Launches In October
  • Russia Proton-M Booster Puts US Satellite Into Orbit

  • Space Shuttle Endeavour Moved To Launch Pad
  • Improved Shuttle Readied For Trip To Space Station
  • NASA Shuttle Endeavour Set To Launch August 7
  • Shuttle Endeavour To Move To Pad Crew Ready For Countdown Test

  • Station Crew Prepares For Spacewalk And STS-118 Shuttle Endeavour Mission
  • Atlantis Readies For Columbus Mission
  • Space Station Crew Gets Rid Of Trash
  • Progress Spacecraft To Bring Computer Equipment To ISS In August

  • Washington Conference To Examine Impact Of Civilian Space Travel On Culture And Economy
  • First Malaysian Astronaut To Take Off For Space Station October 10
  • Wyle To Prepare First Passengers For Virgin Galactic Maiden Spaceflight
  • Russia Launches Genesis 2 On Converted SS-18 ICBM Launcher

  • Dongfanghong 4 Ready For More International Satellite Orders
  • China To Launch Third Sino-Brazilian Satellite In September
  • China Launches Satellite To Take TV Signal Nationwide
  • China Launches Communications Satellite SinoSat-3

  • Lockheed Martin Reaches Major Milestone For The Mule Robotic Vehicle Engineering Evaluation Unit
  • Eurobot Makes A Splash
  • Team SpelBots Take On Robotic Titans At RoboCup 2007
  • Japanese Humanoid Is Working In The Rain

  • Opportunity Waiting For Dust To Settle
  • Hunt For Life On Mars Goes Underground In New NASA Mission
  • The Origin Of Perennial Water-Ice At The South Pole Of Mars
  • Arizona State Scientists Keep An Eye On Martian Dust Storm

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement