Space Travel News  
EARLY EARTH
The Earth formed much faster than previously thought
by Staff Writers
Copenhagen, Denmark (SPX) Feb 21, 2020

They may not look like much, but CI chondrites - small fragile meteorites as shown here - are thought to be our best compositional equivalents of the bulk material of our solar system.

The precursor of our planet, the proto-Earth, formed within a time span of approximately five million years, shows a new study from the Centre for Star and Planet Formation (StarPlan) at the Globe Institute at the University of Copenhagen.

On an astronomical scale, this is extremely fast, the researchers explain.

If you compare the solar system's estimated 4.6 billion years of existence with a 24-hour period, the new results indicate that the proto-Earth formed in what corresponds to about a minute and a half.

Thus, the results from StarPlan break with the traditional theory that the proto-Earth formed by random collisions between larger and larger planetary bodies throughout several tens of millions of years - equivalent to about 5-15 minutes out of the above-mentioned fictional 24 hours of formation.

Instead, the new results support a more recent, alternative theory about the formation of planets through the accretion of cosmic dust. The study's lead author, Associate Professor Martin Schiller, explains it as follows:

'The other idea is that we start from dust, essentially. Millimetre-sized objects, all coming together, raining down on the growing body and making the planet in one go,' he says, adding:

'Not only is this implication of the rapid formation of the Earth interesting for our solar system. It is also interesting to assess how likely it is for planets to form somewhere else in the galaxy.'

The bulk composition of the solar system
The key to the new finding came in the form of the most precise measurements of iron isotopes that have so far been published scientifically.

By studying the isotopic mixture of the metallic element in different meteorites, the researchers found only one type of meteoritic material with a composition similar to Earth: The so-called CI chondrites.

The researchers behind the study describe the dust in this fragile type of meteorite as our best equivalent to the bulk composition of the solar system itself. It was dust like this combined with gas that was funnelled via a circumstellar accretion disk onto the growing Sun.

This process lasted about five million years and our planets were made from material in this disk. Now, the researchers estimate that the proto-Earth's ferrous core also formed already during this period, removing early accreted iron from the mantle.

Two different iron compositions
Other meteorites, for example from Mars, tell us that at the beginning the iron isotopic composition of material contributing to the growing Earth was different. Most likely due to thermal processing of dust close to the young sun, the researchers from StarPlan explain.

After our solar system's first few hundred thousands of years it became cold enough for unprocessed CI dust from further out in the system to enter the accretion region of the proto-Earth.

'This added CI dust overprinted the iron composition in the Earth's mantle, which is only possible if most of the previous iron was already removed into the core. That is why the core formation must have happened early,' Martin Schiller explains.

'If the Earth's formation was a random process where you just smashed bodies together, you would never be able to compare the iron composition of the Earth to only one type of meteorite. You would get a mixture of everything,' he adds.

More planets, more water, perhaps more life
Based on the evidence for the theory that planets form through the accretion of cosmic dust, the researchers believe that the same process may occur elsewhere in the universe.

This means that also other planets may likely form much faster than if they grow solely from random collisions between objects in space.

This assumption is corroborated by the thousands of exoplanets - planets in other galaxies - that astronomers have discovered since the mid-nineties, explains Centre Leader and co-author of the study, Professor Martin Bizzarro:

'Now we know that planet formation happens everywhere. That we have generic mechanisms that work and make planetary systems. When we understand these mechanisms in our own solar system, we might make similar inferences about other planetary systems in the galaxy. Including at which point and how often water is accreted', he says, adding:

'If the theory of early planetary accretion really is correct, water is likely just a by-product of the formation of a planet like the Earth - making the ingredients of life, as we know it, more likely to be found elsewhere in the universe'.

Research paper


Related Links
University Of Copenhagen The Faculty Of Health And Medical Sciences
Explore The Early Earth at TerraDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


EARLY EARTH
Fossilized insect from 100 million years ago is oldest record of primitive bee with pollen
Corvallis OR (SPX) Feb 17, 2020
Beetle parasites clinging to a primitive bee 100 million years ago may have caused the flight error that, while deadly for the insect, is a boon for science today. The female bee, which became stuck in tree resin and thus preserved in amber, has been identified by Oregon State University researcher George Poinar Jr. as a new family, genus and species. The mid-Cretaceous fossil from Myanmar provides the first record of a primitive bee with pollen and also the first record of the beetle parasi ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARLY EARTH
EARLY EARTH
NASA's Mars Reconnaissance Orbiter Undergoes Memory Update

Journey to the center of Mars

NASA adds return sample scientists to Mars 2020 leadership team

Nilosyrtis Mensae - erosion on a large scale

EARLY EARTH
China's Chang'e-4 probe resumes work for 15th lunar day

NASA selects university teams to build technologies for the Moon's darkest areas

Vice President, Administrator visit NASA Langley for Artemis Update

NASA awards contract to launch Lunar CubeSat

EARLY EARTH
TRIDENT Mission Concept Selected by NASA's Discovery Program

Findings from Juno Update Jupiter Water Mystery

One Step Closer to the Edge of the Solar System

A close-up of Arrokoth reveals how planetary building blocks were constructed

EARLY EARTH
New technologies, strategies expanding search for extraterrestrial life

Sub-Neptune sized planet validated with the habitable-zone planet finder

Planet on edge of destruction in 18-hour year frenzy

LOFAR pioneers new way to study exoplanet environments

EARLY EARTH
SpaceX announces partnership to send four tourists into deep orbit

Simple, fuel-efficient rocket engine could enable cheaper, lighter spacecraft

SpaceX re-useable rocket misses landing ship

Blue Origin opens Huntsville factory for BE-7 rocket engines

EARLY EARTH
China's Yuanwang-5 sails to Pacific Ocean for space monitoring mission

Construction of China's space station begins with start of LM-5B launch campaign

China Prepares to Launch Unknown Satellite Aboard Long March 7A Rocket

China's Long March-5B carrier rocket arrives at launch site

EARLY EARTH
First research results on the 'spectacular meteorite fall' of Flensburg

How to deflect an asteroid

OSIRIS-REx Osprey Flyover

Leiden astronomers discover potential near-earth objects









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.