Space Travel News  
FROTH AND BUBBLE
Temporary 'bathtub drains' in the ocean concentrate flotsam
by Staff Writers
Seattle WA (SPX) Jan 23, 2018


illustration only

An experiment featuring the largest flotilla of sensors ever deployed in a single area provides new insights into how marine debris, or flotsam, moves on the surface of the ocean.

The experiment conducted in the Gulf of Mexico near the site of the Deepwater Horizon oil spill placed hundreds of drifting sensors to observe how material moves on the ocean's surface. Rather than spread out, as current calculations would predict, many of them clumped together in a tight cluster.

The results hold promise for the cleanup of marine pollution and have wider implications for ocean science. The open-access paper was published the week of Jan. 16 in the Proceedings of the National Academy of Sciences.

"To observe floating objects spread out over a region the size of a city concentrate into a region smaller than a football stadium was just amazing," said first author Eric D'Asaro, a UW professor of oceanography.

"We knew there would be some concentration, but the magnitude seen was quite stunning."

Textbook science would predict that material in the ocean would simply diffuse - that is, move apart or flow with the currents. But recent research has begun to explore the role of oceanic fronts and vortexes, and a 2015 study showed that small-scale eddies push phytoplankton down to hundreds of feet below the water's surface.

The new study shows that such eddies can draw in flotsam from a wide area. If scientists could somehow observe or predict this funneling behavior, it might help to clean up oil spills or recover marine plastics and other floating debris.

"The hope is to apply this in ocean cleanup projects, but first we have to figure out how to observe or predict where these concentrations will occur," D'Asaro said.

The research was funded by the industry-backed Gulf of Mexico Research Initiative.

For the 2016 field campaign, co-author Tamay Ozgokmen and his team at the University of Miami designed inexpensive drifting sensors that are built from biodegradable plastic so that hundreds can be deployed at a time. During a winter cruise, the team placed the instruments about 75 kilometers from the mouth of the Mississippi River, in an area where fresh, cold river water meets saltier, warmer and denser water from the Gulf of Mexico. The cruise deployed more than 1,000 drifters, making it the largest-ever deployment of individually-trackable ocean drifters in a single location to see how they behave as a group.

The experiment that's the focus of this study dropped 326 drifters in a grid with 1 kilometer spacing over the course of about 16 hours. Eight days later, roughly half the drifters were contained in a circle the size of 60 meters (200 feet), an area 400 times smaller than when they began. Underwater observations show a bulge of seawater plunging down simultaneously in this location.

"It is much like the spinning vortex that forms in a bathtub: Water sinks in a small region, but water from much larger region moves toward the vortex," D'Asaro said.

The drifters are buoyant and stayed floating on the surface. They remained clumped together for about 10 days and then slowly dispersed over the following weeks. Meanwhile the other half of the drifters simply spread out over an area of 100 kilometers, as traditional calculations would predict.

"This is probably how the vertical exchange in the ocean ultimately works," said second author Andrey Shcherbina, an oceanographer at the UW's Applied Physics Laboratory.

"Even though we think about ocean mixing as a large-scale process, once we start looking closer we begin to realize that it might actually happen episodically, on very small scales, at select hotspots that flash here and there."

The findings also have wider implications for how the ocean behaves. If mixing happens at smaller scales, and less buoyant material gets sucked down into the vortex, then finer-grained models could better capture processes such as blooms of marine plants, carbon transport and water circulation.

"There have been increasing theoretical reasons to believe that something like this should happen, and some previous measurements which supported those ideas," D'Asaro said.

"But I think this will be a landmark experiment, because it is so dramatic and easy to understand."

Research paper

FROTH AND BUBBLE
China says air quality 'improved' in 2017
Beijing (AFP) Jan 18, 2018
China's air quality improved across the country in 2017, the environmental protection ministry said Thursday, after the problem was so dire in previous years that some periods were dubbed an "airpocalypse". The average level of PM2.5 particles - which penetrate deep into the lungs - in 338 cities stood at 43 micrograms per cubic metre last year, falling 6.5 percent year-on-year, according ... read more

Related Links
University of Washington
Our Polluted World and Cleaning It Up


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

FROTH AND BUBBLE
FROTH AND BUBBLE
Deep, buried glaciers spotted on Mars

Opportunity takes right at the fork and has successful battery test

Steep Slopes on Mars Reveal Structure of Buried Ice

Scientist's work may provide answer to Martian mountain mystery

FROTH AND BUBBLE
Possible Lava Tube Skylights Discovered Near the North Pole of the Moon

Funding runs dry for Indian Google X Prize lunar team

Astronauts: Trump's proposed Lunar mission will take time

China Prepares for Breakthrough Chang'e 4 Moon Landing in 2018

FROTH AND BUBBLE
New Year 2019 offers new horizons at MU69 flyby

Study explains why Jupiter's jet stream reverses course on a predictable schedule

New Horizons Corrects Its Course in the Kuiper Belt

Does New Horizons' Next Target Have a Moon?

FROTH AND BUBBLE
Ingredients for life revealed in meteorites that fell to Earth

Citizen scientists discover five-planet system

Iron-Rich Stars Host Shorter-Period Planets

SETI project homes in on strange 'fast radio bursts'

FROTH AND BUBBLE
Aerojet Rocketdyne Supports ULA Launch in Support of National Security

Update from Mojave: VSS Unity successfully completes high speed glide flight

India launches country's 100th satellite and 30 microsats

Blue Origin tests rocket engine as US seeks to replace Russian RD-180

FROTH AND BUBBLE
Scientist reveals what is so special about Chines's next moon mission

China's Kuaizhou-11 rocket scheduled to launch in first half of 2018

Nation 'leads world' in remote sensing technology

China plans for nuclear-powered interplanetary capacity by 2040

FROTH AND BUBBLE
NASA's newly renamed Swift mission spies a comet slowdown

NASA image showcases Ceres mountain named for Kwanzaa

Development on muon beam analysis of organic matter in samples from space

Arecibo radar returns with asteroid Phaethon images









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.