![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Zurich, Switzerland (SPX) Dec 01, 2015
What is true for double-blade razors is also true for solar cells: two work steps are more thorough than one. Stacking two solar cells one on top of the other, where top cell is semi-transparent, which efficiently converts large energy photons into electricity, while the bottom cell converts the remaining or transmitted low energy photons in an optimum manner. This allows a larger portion of the light energy to be converted to electricity. Up to now, the sophisticated technology needed for the procedure was mainly confined to the realm of Space or Concentrated Photovoltaics (CPV). These "tandem cells" grown on very expensive single crystal wafers are considered not attractive for mass production and low cost solar electricity. The research team working under Stephan Buecheler and Ayodhya N. Tiwari from the Laboratory for Thin Films and Photovoltaics at Empa-Swiss Federal Laboratories for Material Science and Technology has now succeeded in making tandem solar cells that are based on polycrystalline thin films, and the methods are suitable for large area low cost processing, Flexible plastic or metal foils could also be used as substrate in future. This marks a major milestone on the path to mass production of high-efficiency solar cells with low cost processes. The secret behind the new process is that the researchers create the top solar cell perovskite film with a low-temperature procedure at just 50 degrees Celsius. This promises an energy-saving and cost-saving production stage for future manufacturing processes. The tandem solar cell yielded an efficiency rate of 20.5% when converting light to electricity. Already with this first attempt Empa researchers have emphasized that it has lots more potential to offer for better conversion of solar spectrum into electricity.
Molecular soccer balls as a substrate for the magic crystal Each PCBM molecule contains 61 carbon atoms interconnected in the shape of a soccer ball. The perovskite film is prepared by a combination of vapour deposition and spin coating onto this layer, which has tiny football like structure, followed by an annealing at a "lukewarm" temperature. This magic perovskite crystal absorbs blue and yellow spectrum of visible light and converts these into electricity. By contrast, red light and infrared radiation simply pass through the crystal. As a result, the researchers can attach a further solar cell underneath the semi-transparent perovskite cell in order to convert the remaining light into electricity.
Advantage of the double-layer cell: better use of the spectrum of sunlight A solar cell can only convert radiation with an energy level higher than the bandgap of the semiconductor used. If the radiation energy is lower, no electricity is generated. If the radiation is higher in energy, the excess radiated energy is converted to heat and is lost. A double-layer solar cell like Empa's perovskite CIGS cell can combine substances with differing bandgaps and thus efficiently convert a larger share of the incident solar energy to electricity.
More than 30% efficiency is possible "What we have achieved now is just the beginning. We will have to overcome many obstacles before reaching this ambitious goal. To do this, we will need lots of interdisciplinary experience and a large number of combinatorial experiments until we have found a semi-transparent high-performance cell together with the right base cell, and technologies for electrical interconnections of these solar cells." Stephan Bucheler, who coordinates the lab research in Tiwari's team, reminds us that the race for efficiency in solar cell research is certainly not just an academic show. "When producing solar-powered electricity, only half of the costs are down to the solar module itself. The other half are incurred for the infrastructure: inverters, cables, carriers for the cells, engineering costs and installation. These ancillary costs are reduced when the solar cells become more efficient and can be built in smaller sizes as a result. This means that efficient solar cells are the key to low-cost renewable electricity."
Related Links Swiss Federal Laboratories for Materials Science and Technology (EMPA) All About Solar Energy at SolarDaily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |