. Space Travel News .




.
SOLAR DAILY
Taking the pulse of charge-separation processes
by Staff Writers
Munich, Germany (SPX) Oct 27, 2011

File image.

The use of organic photovoltaics for the production of electricity from sunlight offers an attractive and promising basis for an innovative and environmentally friendly means of energy supply. They can be manufactured quite economically and, because they are as bendable as plastic wrap, they can be processed flexibly.

The problem is that they are yet markedly less efficient than conventional inorganic semiconductor cells. The most crucial process in the conversion of light into electric current is the generation of free charge carriers.

In the first step of photoconversion, upon absorption of light one component of the organic solar cell, usually a polymer, releases electrons that are taken up by the second component of the cell - in this case silicon nanoparticles - and can then be transported further.

"The mechanisms and the timescale of charge separation have been the subject of controversial scientific debate for many years," says LMU physics professor Eberhard Riedle. In cooperation with investigators at the Technical University in Munich and at Bayreuth University, Riedle and his group have now been able to dissect the process in detail.

To do so, the researchers used a novel hybrid cell type containing both organic and inorganic constituents, in which silicon serves as the electron acceptor.

Based on the insights obtained with this system, they developed a processing strategy to improve the structural order of the polymer - and found that this enhances the efficiency of charge separation in organic semiconductors by up to twofold. Their findings provide a new way to optimize the performance of organic solar cells.

The key to this breakthrough lies in a unique, laser-based experimental setup, which combines extremely high temporal resolution of 40 femtoseconds (fs) with a very broadband detection.

This allowed the team to follow the ultrafast processes induced by photon absorption in real time as they occur. Instead of the fullerenes used in typical organic cells, the researchers used silicon as the electron acceptor, a choice that has two major advantages.

"First, with these novel hybrid solar cells, we were able to probe the photophysical processes taking place in the polymer with greater precision than ever before, and secondly through the use of silicon, a much larger segment of the solar spectrum can be harnessed for electricity," says Riedle.

It turns out that free charge carriers - so called polarons - are not generated immediately upon photoexcitation, but with a delay of about 140 fs. Primary photoexcitation of a polymer molecule first leads to the formation of an excited state, called an exciton.

This then dissociates, releasing an electron, which is then transferred to the electron acceptor. The loss of electrons leaves behind positively charged "holes" in the polymer and, as oppositely charged entities are attracted to one another by the Coulomb force, the two have a tendency to recombine.

"In order to obtain free charge carriers, electron and hole must both be sufficiently mobile to overcome the Coulomb force," explains Daniel Herrmann, the first author of the new study.

The team was able to show, for the first time, that this is much easier to achieve in polymers with an ordered, regular structure than with polymers that are chaotically arranged. In other words, a high degree of self-organization of the polymer significantly increases the efficiency of charge separation.

"The polymer that we used is one of the few known to have a tendency to self-organize. This tendency can be inhibited, but one can also increase the polymer's intrinsic propensity for self-organization by choosing appropriate processing parameters," Herrmann explains.

By cleverly optimizing the processing of the polymer P3HT, the researchers succeeded in doubling the yield of free charge carriers - and thereby significantly enhancing the efficiency of their experimental solar cells. (god/PH)

Publication: "Role of Structural Order and Excess Energy on Ultrafast Free Charge Generation in Hybrid Polythiophene/Si Photovoltaics probed in Real Time by Near-Infrared Broadband Transient Absorption"; D. Herrmann, S. Niesar, C. Scharsich, A. Kohler, M. Stutzmann, E. Riedle; J. Am.Chem. Soc. online, 21. September 2011.

Related Links
Technical University in Munich
All About Solar Energy at SolarDaily.com




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



SOLAR DAILY
KYOCERA Supplies 2MW of Modules for Solar Power Plant in France
Kyoto, Japan (SPX) Oct 27, 2011
Kyocera has announced that is has supplied 8,500 solar modules for a new 2-megawatt (MW) solar power plant which sits over four acres of unused farmland in north-western France. The plant was officially inaugurated on October 21 in Distre, in the French department of Maine-et-Loire. The large-scale installation is a flagship project in terms of sustainability, and the Kyocera solar modules ... read more


SOLAR DAILY
SpaceX Completes Key Milestone to Fly Astronauts to International Space Station

ILS Proton Launches ViaSat-1 for ViaSat

Final checks for first Soyuz launch from Kourou

Soyuz is put through its paces for Thursday's launch

SOLAR DAILY
Opportunity Past 21 Miles of Driving! Will Spend Winter at Cape York

Scientists develope new way to determine when water was present on Mars and Earth

Mars Rover Carries Device for Underground Scouting

Mars Landing-Site Specialist

SOLAR DAILY
Lunar Probe to search for water on Moon

Subtly Shaded Map of Moon Reveals Titanium Treasure Troves

NASA's Moon Twins Going Their Own Way

Titanium treasure found on Moon

SOLAR DAILY
Dwarf planet may not be bigger than Pluto

Series of bumps sent Uranus into its sideways spin

Mission to Mysterious Uranus

Spinning hourglass object may be the first of many to be discovered in the Kuiper belt

SOLAR DAILY
UH Astronomer Finds Planet in the Process of Forming

Nearby planet-forming disk holds water for thousands of oceans

Herschel discovers tip of cosmic iceberg around nearby young star

NASA's Spitzer Detects Comet Storm In Nearby Solar System

SOLAR DAILY
The Spark Of A New Era Was A Blast For Rocket Science

Caltech Event Marks 75th Anniversary of JPL Rocket Tests

Russia puts new Rus-M carrier rocket project on hold

Russia to abandon rocket booster work

SOLAR DAILY
Living on Tiangong

Thousands of dreams to fly on Shenzhou 8

China's first space lab module in good condition

Takeoff For Tiangong

SOLAR DAILY
Researchers Explain the Formation of Scheila's Unusual Triple Dust Tails

Formation of Scheila's Triple Dust Tails Explained

NASA's Dawn Science Team Presents Early Science Results

Amateur skywatchers help space hazards team


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement