Space Travel News  
ENERGY TECH
Taking a closer look at 'electrifying' chemistry
by Staff Writers
Nuremberg, Germany (SPX) Jun 15, 2018

illustration only

The future of chemistry is 'electrifying'. With the increasing availability of electrical energy from renewable sources, it will be possible in the future to drive many chemical processes using an electric current. This will facilitate the use of sustainable methods to manufacture products or fuels, replacing current processes which are based on fossil fuels.

However, exactly how these electrocatalysts work is not yet fully understood. This could now all change with a new method developed by researchers from Friedrich-Alexander-Universitat Erlangen-Nurnberg (FAU) and the Helmholtz Institute Erlangen-Nurnberg for Renewable Energy (HI ERN).

Reactions driven by electricity almost always use so-called electrocatalysts, which are usually highly complex materials made up of a large number of chemical components. The role of electrocatalysts is to ensure the reaction takes place while keeping any losses to a minimum, thus wasting as little as possible of the renewable energy, which is complex to produce.

This method can be used to produce important energy carriers such as hydrogen directly from water and to convert climate gases such as carbon dioxide into valuable basic chemicals. In most cases, the precise chemical processes in electrocatalysts are not very well understood.

Improving the understanding of this electrically driven chemistry is essential, on the one hand to manufacture catalysts for new processes in a targeted manner and, on the other, to improve the often extremely limited life of the catalysts themselves.

As reported in the journal Nature Materials, researchers from FAU, HI-ERN and their international partner groups have now developed a new method that will enable electrocatalytic reactions to be studied in much more detail in future.

In conjunction with Prof. Dr. Karl Mayrhofer at HI-ERN, the working group led by Prof. Dr. Jorg Libuda, Professor of Physical Chemistry at FAU, demonstrated that it is possible to construct a complex electrocatalyst with atomic precision and to use it to study the precise mechanism of electrocatalytic reactions. The catalysts are assembled in so-called ultra-high vacuum conditions, in the complete absence of all contaminants that often influence results.

This breakthrough will enable scientists to study a large number of other catalysts using the same strategy, thus improving our understanding of 'electrified' chemistry in the future.

Research paper


Related Links
University of Erlangen-Nuremberg
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Rutgers-led research could lead to more efficient electronics
New Brunswick NJ (SPX) Jun 12, 2018
A Rutgers-led team of physicists has demonstrated a way to conduct electricity between transistors without energy loss, opening the door to low-power electronics and, potentially, quantum computing that would be far faster than today's computers. Their findings, which involved using a special mix of materials with magnetic and insulator properties, are published online in Nature Physics. "This material, although it's much diluted in terms of magnetic properties, can still behave like a magne ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
ENERGY TECH
More building blocks of life found on Mars

Curiosity rover finds organic matter, unidentified methane source on Mars

NASA finds ancient organic material, mysterious methane on Mars

Science Team Continues to Improve Opportunity's Use of the Robotic Arm

ENERGY TECH
Thank the moon for Earth's lengthening day

SpaceX delays plans to send tourists around Moon: report

Moonwalking astronaut-artist Alan Bean dies at 86

Chinese relay satellite brakes near moon for entry into desired orbit

ENERGY TECH
NASA Re-plans Juno's Jupiter Mission

New Horizons Wakes for Historic Kuiper Belt Flyby

Collective gravity, not Planet Nine, may explain the orbits of 'detached objects'

Scientists reveal the secrets behind Pluto's dunes

ENERGY TECH
Researchers discover multiple alkali metals in unique exoplanet

The Clarke exobelt, a method to search for possible extraterrestrial civilizations

Searching for Potential Life-Hosting Planets Beyond Earth

Sorry ET, Got Here First: Russian Scientist Suggests Humans Would Destroy Aliens

ENERGY TECH
US Senate introduces measure to upgrade defense against hypersonic threats

First Engine Assembled for DARPA and Boeing Reusable Experimental Spaceplane

Russian Reusable Space Rocket Tests Scheduled for 2022

Lockheed Martin Wins Potential $928 Million Contract to Develop New Hypersonic Missile for the Air Force

ENERGY TECH
China confirms reception of data from Gaofen-6 satellite

Experts Explain How China Is Opening International Space Cooperation

Beijing welcomes use of Chinese space station by all UN Nations

China upgrades spacecraft reentry and descent technology

ENERGY TECH
What it takes to discover small rocks in space

Tiny asteroid first discovered Saturday disintegrates over Africa

NEOWISE Thermal Data Reveal Surface Properties of Over 100 Asteroids

Dawn mission enters new orbit ahead of new opportunities









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.