Subscribe free to our newsletters via your
. Space Travel News .




BIO FUEL
Synthetic biology used to engineer new route to biochemicals
by Staff Writers
Davis CA (SPX) Jun 28, 2015


Engineered bacteria use both glucose and acetate, instead of just glucose, as raw material to make isobutyl acetate, which can be used in chemical manufacturing and as fuel. Image courtesy of Shota Atsumi/UC Davis. For a larger version of this image please go here.

Living cells can make a vast range of products for us, but they don't always do it in the most straightforward or efficient way. Shota Atsumi, a chemistry professor at UC Davis, aims to address that through "synthetic biology:" designing and building new biochemical pathways within living cells, based on existing pathways from other living things.

In a new paper published by Nature Communications June 25th, Atsumi and colleagues Yohei Toshiro and Shuchi Desai describe building a new pathway that lets the bacterium, E. coli, feed on both sugar (glucose) and acetate, a common waste material from biomass, to make isobutyl acetate. This product can be used as the basis for flavoring agents, solvents and fuels.

The original pathway starts with glucose, which is converted into both isobutanol (via a pyruvate intermediate) and into acetyl-coenzyme A, a common building block in biochemistry used for making biochemicals such as proteins, fats and alcohols, among other things. The theoretical maximum carbon yield from this pathway is 67 percent, which is lower than chemists would like to see.

Atsumi's team engineered E. coli so that they could scavenge acetate to make acetyl-CoA while using glucose to make isobutanol. The new pathway raises the theoretical maximum carbon yield of isobutyl acetate to 75 percent.

The process might be further improved by using an acetate-assimilation pathway from other soil bacteria that are better at living off acetate than E. coli, the authors note. Because acetyl-CoA is such an important material for making other biological molecules, direct acetate assimilation could have wide application in biotechnology.

The work was supported by a Hellman Fellowship.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of California - Davis
Bio Fuel Technology and Application News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








BIO FUEL
Mold unlocks new route to biofuels
Manchester, UK (SPX) Jun 22, 2015
Scientists at The University of Manchester have made an important discovery that forms the basis for the development of new applications in biofuels and the sustainable manufacturing of chemicals. Based at the Manchester Institute of Biotechnology (MIB), researchers have identified the exact mechanism and structure of two key enzymes isolated from yeast moulds that together provide a new, cleane ... read more


BIO FUEL
SpaceX rocket explodes after launch

What cargo was lost in the SpaceX explosion?

Garvey Spacecraft selects Pacific Spaceport Complex

Sentinel-2A satellite ready for Launch from Kourou

BIO FUEL
Rover In Good Health After Communication Blackout

Veteran NASA Spacecraft Nears 60,000th Lap Around Mars, No Pit Stops

Scientists find methane in Mars meteorites

NASA Signs Agreements to Advance Agency's Journey to Mars

BIO FUEL
Russia to Land Space Vessel on Moon's Polar Region in 2019

Moon engulfed in permanent, lopsided dust cloud

Crashing comets may explain mysterious lunar swirls

Google Lunar X-Prize meets Yoda

BIO FUEL
37 Years after Its Discovery, Pluto's Moon Charon Is Being Revealed

Much variety on Pluto's Close Approach Hemisphere, and a Charon dark pole

Ceres Spots Continue to Mystify in Latest Dawn Images

Different Faces of Pluto Emerging in New Images from New Horizons

BIO FUEL
Can Planets Be Rejuvenated Around Dead Stars?

Spiral arms cradle baby terrestrial planets

Supercomputer model shows planet making waves in nearby debris disk

Hubble sees a 'behemoth' bleeding atmosphere around a warm exoplanet

BIO FUEL
ESA spaceplane on display

US Rocketeers Take Home Championship

Communicating with hypersonic vehicles in flight

RS-25 Engine Fires Up for Third Test in Series

BIO FUEL
Cooperation in satellite technology put Belgium, China to forefront

China's super "eye" to speed up space rendezvous

Electric thruster propels China's interstellar ambitions

China Plans First Ever Landing On The Lunar Far Side

BIO FUEL
Exposed water ice detected on comet's surface

OSIRIS-REx Team Prepares for Next Step

Rosetta tracks debris around comet

MIRO maps water in comet's coma




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.