Space Travel News
SOLAR DAILY
Surprisingly diverse innovations led to dramatically cheaper solar panels
illustration only
Surprisingly diverse innovations led to dramatically cheaper solar panels
by Adam Zewe | MIT News
Boston MA (SPX) Aug 13, 2025

The cost of solar panels has dropped by more than 99 percent since the 1970s, enabling widespread adoption of photovoltaic systems that convert sunlight into electricity.

A new MIT study drills down on specific innovations that enabled such dramatic cost reductions, revealing that technical advances across a web of diverse research efforts and industries played a pivotal role.

The findings could help renewable energy companies make more effective R and D investment decisions and aid policymakers in identifying areas to prioritize to spur growth in manufacturing and deployment.

The researchers' modeling approach shows that key innovations often originated outside the solar sector, including advances in semiconductor fabrication, metallurgy, glass manufacturing, oil and gas drilling, construction processes, and even legal domains.

"Our results show just how intricate the process of cost improvement is, and how much scientific and engineering advances, often at a very basic level, are at the heart of these cost reductions. A lot of knowledge was drawn from different domains and industries, and this network of knowledge is what makes these technologies improve," says study senior author Jessika Trancik, a professor in MIT's Institute for Data, Systems, and Society.

Trancik is joined on the paper by co-lead authors Goksin Kavlak, a former IDSS graduate student and postdoc who is now a senior energy associate at the Brattle Group; Magdalena Klemun, a former IDSS graduate student and postdoc who is now an assistant professor at Johns Hopkins University; former MIT postdoc Ajinkya Kamat; as well as Brittany Smith and Robert Margolis of the National Renewable Energy Laboratory. The research appears in PLOS ONE.

Identifying innovations

This work builds on mathematical models that the researchers previously developed that tease out the effects of engineering technologies on the cost of photovoltaic (PV) modules and systems.

In this study, the researchers aimed to dig even deeper into the scientific advances that drove those cost declines.

They combined their quantitative cost model with a detailed, qualitative analysis of innovations that affected the costs of PV system materials, manufacturing steps, and deployment processes.

"Our quantitative cost model guided the qualitative analysis, allowing us to look closely at innovations in areas that are hard to measure due to a lack of quantitative data," Kavlak says.

Building on earlier work identifying key cost drivers - such as the number of solar cells per module, wiring efficiency, and silicon wafer area - the researchers conducted a structured scan of the literature for innovations likely to affect these drivers. Next, they grouped these innovations to identify patterns, revealing clusters that reduced costs by improving materials or prefabricating components to streamline manufacturing and installation. Finally, the team tracked industry origins and timing for each innovation, and consulted domain experts to zero in on the most significant innovations.

All told, they identified 81 unique innovations that affected PV system costs since 1970, from improvements in antireflective coated glass to the implementation of fully online permitting interfaces.

"With innovations, you can always go to a deeper level, down to things like raw materials processing techniques, so it was challenging to know when to stop. Having that quantitative model to ground our qualitative analysis really helped," Trancik says.

They chose to separate PV module costs from so-called balance-of-system (BOS) costs, which cover things like mounting systems, inverters, and wiring.

PV modules, which are wired together to form solar panels, are mass-produced and can be exported, while many BOS components are designed, built, and sold at the local level.

"By examining innovations both at the BOS level and within the modules, we identify the different types of innovations that have emerged in these two parts of PV technology," Kavlak says.

BOS costs depend more on soft technologies, nonphysical elements such as permitting procedures, which have contributed significantly less to PV's past cost improvement compared to hardware innovations.

"Often, it comes down to delays. Time is money, and if you have delays on construction sites and unpredictable processes, that affects these balance-of-system costs," Trancik says.

Innovations such as automated permitting software, which flags code-compliant systems for fast-track approval, show promise. Though not yet quantified in this study, the team's framework could support future analysis of their economic impact and similar innovations that streamline deployment processes.

Interconnected industries

The researchers found that innovations from the semiconductor, electronics, metallurgy, and petroleum industries played a major role in reducing both PV and BOS costs, but BOS costs were also impacted by innovations in software engineering and electric utilities.

Noninnovation factors, like efficiency gains from bulk purchasing and the accumulation of knowledge in the solar power industry, also reduced some cost variables.

In addition, while most PV panel innovations originated in research organizations or industry, many BOS innovations were developed by city governments, U.S. states, or professional associations.

"I knew there was a lot going on with this technology, but the diversity of all these fields and how closely linked they are, and the fact that we can clearly see that network through this analysis, was interesting," Trancik says.

"PV was very well-positioned to absorb innovations from other industries - thanks to the right timing, physical compatibility, and supportive policies to adapt innovations for PV applications," Klemun adds.

The analysis also reveals the role greater computing power could play in reducing BOS costs through advances like automated engineering review systems and remote site assessment software.

"In terms of knowledge spillovers, what we've seen so far in PV may really just be the beginning," Klemun says, pointing to the expanding role of robotics and AI-driven digital tools in driving future cost reductions and quality improvements.

In addition to their qualitative analysis, the researchers demonstrated how this methodology could be used to estimate the quantitative impact of a particular innovation if one has the numerical data to plug into the cost equation.

For instance, using information about material prices and manufacturing procedures, they estimate that wire sawing, a technique which was introduced in the 1980s, led to an overall PV system cost decrease of $5 per watt by reducing silicon losses and increasing throughput during fabrication.

"Through this retrospective analysis, you learn something valuable for future strategy because you can see what worked and what didn't work, and the models can also be applied prospectively. It is also useful to know what adjacent sectors may help support improvement in a particular technology," Trancik says.

Moving forward, the researchers plan to apply this methodology to a wide range of technologies, including other renewable energy systems. They also want to further study soft technology to identify innovations or processes that could accelerate cost reductions.

"Although the process of technological innovation may seem like a black box, we've shown that you can study it just like any other phenomena," Trancik says.

This research is funded, in part, by the U.S. Department of Energy Solar Energies Technology Office.

Research Report:"Nature of innovations affecting photovoltaic system costs"

Related Links
Institute for Data, Systems, and Society
All About Solar Energy at SolarDaily.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
SOLAR DAILY
Self assembled monolayer boosts performance of lead free tin perovskite solar cells
Berlin, Germany (SPX) Aug 06, 2025
Perovskite semiconductors offer promising potential for solar energy due to their thin, flexible structure, high efficiency, and low production costs. However, widespread commercialization remains limited by two critical factors: long-term stability and the presence of toxic lead in high-performing variants. Researchers at Helmholtz-Zentrum Berlin (HZB) are investigating tin-based perovskite solar cells as a safer, more stable alternative. These lead-free cells exhibit unique electro-optical trait ... read more

SOLAR DAILY
SOLAR DAILY
Martian fractures reveal ancient forces and icy flows

Perseverance Rover Delivers Most Detailed Mars Panorama Yet

Unique Martian sulfate points to recent thermal activity and mineral formation

SpaceX agrees to take Italian experiments to Mars

SOLAR DAILY
NASA administrator seeks plan to place nuclear reactor on moon

Astronaut Jim Lovell, commander of Apollo 13, dies at 97

US astronaut Jim Lovell, commander of Apollo 13, dead at 97

China allocates fresh batch of lunar samples to domestic research institutions

SOLAR DAILY
Simulated ice volcanoes reveal how water behaves on distant moons

China eyes Neptune for groundbreaking ice giant mission

JunoCam revived by onboard heat treatment just in time for Io flyby

Rare Trans Neptunian Object Reveals Unexpected Orbital Dance with Neptune

SOLAR DAILY
Hints emerge of giant planet orbiting Alpha Centauri A

Some young suns align with their planet-forming disks, others are born tilted

Super alcohol discovery reveals potential building block of cosmic life

Giant rogue planets could host scaled-down planetary systems

SOLAR DAILY
NASA contracts Impulse Space for studies on cost effective orbital transfer solutions

Embry-Riddle Researchers Launch Rockets for a Deeper Look at Ionized Clouds That Disrupt Communications

Rocket Lab expands iQPS satellite network with successful Electron launch

Intuitive Machines wins funding to advance orbital logistics vehicle

SOLAR DAILY
Six Chinese universities to launch new low altitude space major this fall

International deep space alliance launched in Hefei China

China launches international association to boost global access to deep space research

Chinese Long March Rockets Make International Debut at Paris Air Show

SOLAR DAILY
Hera spacecraft tests asteroid tracking with distant Otero and Kellyday observations

Perseid meteor shower set to peak Aug. 12-13

Heliostat arrays eyed for asteroid detection during nighttime hours

Tianwen-2 radar to reveal inner secrets of asteroids and comets

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.