. Space Travel News .




.
FLORA AND FAUNA
Sugar high for bees
by Jennifer Chu for MIT News
Cambridge, MA (SPX) Oct 17, 2011

File image.

A field of flowers may seem innocuous - but for the birds and bees that depend on it for sustenance, that floral landscape can be a battlefield mined with predators and competitors. The more efficient a pollinator is in feeding, the less chance it has of becoming food itself.

Now mathematicians at MIT have found that efficient feeding depends on how sugary a flower's nectar is, and whether an animal dips or sucks the nectar out. The researchers found that animals such as bees, which probe with their tongues, are "viscous dippers," and are most efficient when feeding on more sugary, or viscous, nectar.

Suction feeders, such as birds and butterflies that draw nectar up through tubes, do their best when sucking up thinner, less sugary nectar.

The difference, says John Bush, a professor of applied mathematics, may point to a co-evolutionary process between flowers and their pollinators.

"Do the flowers want a certain type of bug or bird to pollinate them? And are they offering up the nectar of their preferred pollinator?" Bush asks. "It's an interesting question whether there's a correlation between the morphology of the plant and the morphology of the insect." While Bush is not a biologist, he says curiosities in nature, including nectar feeding, pose fascinating challenges for mathematicians. As he sees it, nectar feeding is a classic example of optimization in nature: The sweeter the nectar, the more energy it delivers, but the more energy it takes to transport. The optimal sugar concentration shifts according to how the fluid is taken up.

As a large-scale analogy, Bush says it's more efficient to suck up sugar water than molasses through a straw. Conversely, it's more effective to dip a spoon in and out of honey versus juice. There's an ideal viscosity for a given uptake mechanism, an optimization puzzle that Bush says is tailored for mathematics.

The birds and the bees
To get at this puzzle, Bush and his colleagues analyzed data from previous papers on nectar-feeding species, which include bats, birds, bees and butterflies.

Most papers described two kinds of nectar-drinking mechanisms: active suction, whereby butterflies and moths suck nectar up through long, narrow tubes, or probosci; and passive suction, in which hummingbirds and sunbirds draw nectar up in their tongues via capillary action.

The team compiled the papers' data and found that both groups of suction feeders were most efficient at taking up the same concentration - 33 percent - of sugar in nectar.

The researchers did the same for viscous dippers: species such as ants, bees and bats, which extract nectar by dipping their tongues in and out of flowers. For these dippers, they found the ideal sugar concentration was 52 percent, demonstrating a preference among these species for nectar that's much more viscous, and sweeter, than their sucking counterparts.

Going a step further, Wonjung Kim, a graduate student of mechanical engineering and lead author of the paper, took an experimental approach, studying live bees in the lab. Kim collected several bees from around MIT and kept them in a box lined with paper towels soaked in a sugar solution. Kim filmed the bees with a high-speed camera, confirming that the insects did indeed dip their tongues in the syrupy surface.

Going with the flow
Bush and Kim plan to examine the ways in which other species drink, in order to model more small-scale fluid dynamics. One target, Bush says, is a certain desert lizard that "drinks" through its skin. The lizard simply has to step in a puddle of water, and an intricate system of cracks in its skin soaks up moisture - a useful trait in extremely dry environments.

"People are now interested in moving around small volumes of fluid for microfluidic applications," Bush says. "It's clear that nature has been solving these problems for millions of years.

"Animals have learned how to efficiently navigate, transport and manipulate water. So there's clearly much to learn from them in terms of mechanisms."

The researchers published their results in a recent issue of the Proceedings of the National Academy of Sciences.

Watch the animals feed on the PNAS website.

Related Links
MIT
Darwin Today At TerraDaily.com




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



FLORA AND FAUNA
Endangered bettong reveals how weather effects species distribution
London, UK (SPX) Oct 14, 2011
Australian scientists studying the reliability of species distribution models for revealing the response of animals to climate change have focused their research on the endangered marsupial, the Northern Bettong. The research, published in Ecography demonstrates that studying weather events, rather than the gradual changes of the climate, offers a clearer insight into the Bettong's movemen ... read more


FLORA AND FAUNA
Huge stakes riding on maiden Soyuz launch from Kourou

Virgin Galactic to give NASA a ride

Indian-French satellite put into orbit

Chinese rocket sends French telecom satellite into space

FLORA AND FAUNA
Russia invited to join Mars missions

Mars Express observes clusters of recent craters in Ares Vallis

Wet and Mild: Caltech Researchers Take the Temperature of Mars' Past

New Mystery On Mars' Forgotten Plains

FLORA AND FAUNA
Subtly Shaded Map of Moon Reveals Titanium Treasure Troves

NASA's Moon Twins Going Their Own Way

Titanium treasure found on Moon

NASA Invites Students to Name Moon-Bound Spacecraft

FLORA AND FAUNA
Series of bumps sent Uranus into its sideways spin

Mission to Mysterious Uranus

Spinning hourglass object may be the first of many to be discovered in the Kuiper belt

Dwarf Planet Mysteries Beckon to New Horizons

FLORA AND FAUNA
UChicago launches search for distant worlds

Astronomers Find Elusive Planets in Decade-Old Hubble Data

University of Texas-led Team Discovers Unusual Multi-Planet System with NASA's Kepler Spacecraft

Heavy Metal Stars Produce Earth-Like Planets

FLORA AND FAUNA
Caltech Event Marks 75th Anniversary of JPL Rocket Tests

Russia puts new Rus-M carrier rocket project on hold

Russia to abandon rocket booster work

Pee power: Urine-loving bug churns out space fuel

FLORA AND FAUNA
China's first space lab module in good condition

Takeoff For Tiangong

Snafu as China space launch set to US patriotic song

Civilians given chance to reach for the stars

FLORA AND FAUNA
NASA's Dawn Science Team Presents Early Science Results

Amateur skywatchers help space hazards team

New View of Vesta Mountain From NASA's Dawn Mission

Almahata Sitta Meteorites Could Come From Triple Asteroid Mash-Up


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement