Space Travel News  
Substance In Tree Bark Could Lead To New Lung-Cancer Treatment

The Lapacho Tree.
by Staff Writers
Dallas TX (SPX) Jun 28, 2007
Researchers at UT Southwestern Medical Center have determined how a substance derived from the bark of the South American lapacho tree kills certain kinds of cancer cells, findings that also suggest a novel treatment for the most common type of lung cancer. The compound, called beta-lapachone, has shown promising anti-cancer properties and is currently being used in a clinical trial to examine its effectiveness against pancreatic cancer in humans. Until now, however, researchers didn't know the mechanism of how the compound killed cancer cells.

Dr. David Boothman, a professor in the Harold C. Simmons Comprehensive Cancer Center and senior author of a study appearing online this week in the Proceedings of the National Academy of Sciences, has been researching the compound and how it causes cell death in cancerous cells for 15 years.

In the new study, Dr. Boothman and his colleagues in the Simmons Cancer Center found that beta-lapachone interacts with an enzyme called NQO1, which is present at high levels in non-small cell lung cancer and other solid tumors. In tumors, the compound is metabolized by NQO1 and produces cell death without damaging noncancerous tissues that do not express this enzyme.

"Basically, we have worked out the mechanism of action of beta-lapachone and devised a way of using that drug for individualized therapy," said Dr. Boothman, who is also a professor of pharmacology and radiation oncology.

In healthy cells, NQO1 is either not present or is expressed at low levels. In contrast, certain cancer cells - like non-small cell lung cancer - overexpress the enzyme. Dr. Boothman and his colleagues have determined that when beta-lapachone interacts with NQO1, the cell kills itself. Non-small cell lung cancer is the most common type of lung cancer.

Beta-lapachone also disrupts the cancer cell's ability to repair its DNA, ultimately leading to the cell's demise. Applying radiation to tumor cells causes DNA damage, which results in a further boost in the amount of NQO1 in the cells.

"When you irradiate a tumor, the levels of NQO1 go up," Dr. Boothman said. "When you then treat these cells with beta-lapachone, you get synergy between the enzyme and this agent and you get a whopping kill."

In the current study, Dr. Boothman tested dosing methods on human tumor cells using a synthesized version of beta-lapachone and found that a high dose of the compound given for only two to four hours caused all the NQO1-containing cancer cells to die.

Understanding how beta-lapachone works to selectively kill chemotherapy-resistant tumor cells creates a new paradigm for the care of patients with non-small cell lung cancer, the researchers said. They are hoping that by using a drug like beta-lapachone, they can selectively target cancer tumors and kill them more efficiently. The current therapy for non-small cell lung cancer calls for the use of platinum-based drugs in combination with radiation.

"Future therapies based on beta-lapachone and NQO1 interaction have the potential to play a major role in treating devastating drug-resistant cancers such as non-small cell lung cancer," said Dr. Erik Bey, lead author of the study and a postdoctoral researcher in the Simmons Cancer Center. "This is the first step in developing chemotherapeutic agents that exploit the proteins needed for a number of cellular processes, such as DNA repair and programmed cell death."

About 85 percent of patients with non-small cell lung cancer have cancer cells containing elevated levels of the NQO1 enzyme, which is produced by a certain gene. Patients who have a different version of the gene would likely not benefit from treatment targeting NQO1, Dr. Boothman said.

Dr. Boothman cautioned that clinical trials of beta-lapachone in lung cancer patients will be needed to determine its effectiveness as a treatment. He and his team have created a simple blood test that would screen patients for the NQO1 enzyme.

Along with Dr. Jinming Gao's laboratory in the Simmons Cancer Center and a joint collaboration with the bioengineering program at UT Dallas, researchers in the new "Cell Stress and Cancer Nanomedicine" initiative within the Simmons Cancer Center have developed novel nanoparticle drug delivery methods for the tumor-targeted delivery of this compound. These delivery methods have the promise of further improving this drug for non-small cell lung cancer.

Other Simmons Cancer Center researchers involved in the study were Dr. Ying Dong, postdoctoral researcher; Dr. Chin-Rang Yang, assistant professor; and Dr. Gao, associate professor. UT Southwestern's Dr. John Minna, director of the Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research and the W.A. "Tex" and Deborah Moncrief Jr. Center for Cancer Genetics, and Dr. Luc Girard, assistant professor of pharmacology, also participated along with researchers from Case Western Reserve University and UT M.D. Anderson Cancer Center.

Related Links
Dr. David Boothman
Hospital and Medical News at InternDaily.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Can Government Force TB Treatments
Washington (UPI) June 25, 2007
Controlling tuberculosis requires a massive effort, and although many communities effectively track and treat the disease, success relies heavily on patient cooperation, experts say. In the aftermath of the highly publicized Andrew Speaker incident -- an Atlanta attorney who traveled across the Atlantic and back while infected with a rare strain of TB -- leaving compliance largely in the patients' hands may seem overly risky to some.







  • Development Contracts Signed For Future European Launchers
  • DARPA And Australia Collaborate On Successful Hypersonic Flight Test
  • Air Force Continues Northrop Grumman Contract For Upper Stage Engine Program
  • World's Largest Vacuum Chamber To Test Orion

  • Arianespace Orders 35 Ariane 5 ECA Rockets
  • Spacehab Subsidiary Wins New NASA Launch Processing Contract At Vandenberg
  • Arianespace Winning Launch Contracts From Across The World
  • 2006 Bumper Year For Satellite Launcher Arianespace

  • Shuttle Endeavour Set For Move To Vehicle Assembly Building
  • NASA Basks In Shuttle Success Amid Tumultuous Year
  • Space Shuttle Lands Back On Earth
  • Bad Weather Pushes STS-117 Landing To Friday

  • Senate Committee Chairs React To NASA Report On ISS National Laboratory
  • Station And Shuttle Crews Close Hatches And Prep For Undocking Tuesday
  • STS-117 Shuttle Crew Conduct Fourth And Final Spacewalk About Space Station
  • Astronauts Fix Computers On ISS And Repair Shuttle Thermal Blanket

  • NASA Selects Reynolds To Design Emergency Egress System For Orion Astronauts
  • Sunita Williams Makes Giant Leaps For Womankind
  • Lack Of Willingness To Discuss NASA Budget Deeply Disappointing
  • Moon Jobs May Crater Suggests Rutgers-Camden Researcher

  • China To Launch Third Sino-Brazilian Satellite In September
  • China Launches Satellite To Take TV Signal Nationwide
  • China Launches Communications Satellite SinoSat-3
  • China Aims To Launch Moon Probe This Year

  • Team SpelBots Take On Robotic Titans At RoboCup 2007
  • Japanese Humanoid Is Working In The Rain
  • Japanese Robot Receptionists For Hire
  • Japanese Researchers Help Robots Brush Up Communication Skills

  • Mars Rover Laser Tool Ready For Testing
  • Mars Experiment To Push Mental Endurance To The Limit
  • Spirit Gets A Solar Panel Spring Clean
  • ESA Wants Space Pioneers For 520-Day Mars Experiment

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement