Space Travel News  
Study Sheds New Light On Dolphin Coordination During Predation

During their hunting forays, these athletic, acrobatic dolphins catch and consume a single fish at a time and each lanternfish may only be 3-5 inches long. To match their 3,200-calorie-per-day diet, they need to eat at least 650 fish each night - plus enough extra to fuel the energy they burn during the hunt, perhaps another 200 to 300 fish.
by Staff Writers
Corvallis OR (SPX) Oct 28, 2008
Spinner dolphins have long been known for their teamwork in capturing prey but a new study using high-tech acoustics has found that their synchronization is even more complex than scientists realized and likely evolved as a strategy to maximize their energy intake.

The study, by scientists at Oregon State University and the University of Hawaii, found that dolphins engage in a highly choreographed night-time "dance" to enclose their prey, and then dart into the circle of confused fish in organized pairs to feed for about 15 seconds, before backing out and letting the next pairs in line take their turn.

Results of the study were published this week in the journal, Acoustical Society of America.

"Synchronized swimmers have nothing on spinner dolphins," said Kelly Benoit-Bird, a marine ecologist at Oregon State University and lead author on the study.

"The degree of synchrony they display when feeding is incredible - especially considering that they're doing it at night, several meters below the surface where they can't see their prey or each other."

The study is important, scientists say, because it greatly expands knowledge of spinner dolphin behavior and it opens up new fields of scientific inquiry into underwater ecosystems made possible by technological advancements in acoustical monitoring. It was funded by the National Science Foundation and the Office of Naval Research.

Much of the knowledge about spinner dolphin feeding has been anecdotal because they are primarily nocturnal in their feeding, Benoit-Bird pointed out. However, acoustical eavesdropping allowed the scientists to "view" the dolphins' behavior without interrupting their routine with lights and underwater cameras.

In their study off the coast of Oahu, Hawaii, the scientists used sonar readings from a "multi-beam echo-sounder" to monitor groups of spinner dolphins. The animals' systematic approach to feeding was eye-opening.

Initially a small group of about 20 dolphins would swim side-by-side in a straight line until finding concentrations of prey - in this case, lanternfish. When they got to within five meters of their prey, they would pull into a tight circular formation and sequentially swim up and down vertically, in essence, doing "the wave" like fans at a sporting event, Benoit-Bird said.

"They were using their bodies like a plow," she said. "We're not sure if they were creating a pressure barrier or trying to confuse the prey. But the result among the lanternfish was chaos."

As the lanternfish became concentrated, the dolphins tightened their circle and formed 10 pairs. The pairs at one o'clock and seven o'clock would move in, feed for 15 seconds, and retreat back to the circle. Then the pairs at two o'clock and eight o'clock would do likewise.

The feeding would last for about five minutes, during which time each dolphin got two opportunities to feed, and then the group rose as one to the surface to breathe, maintaining their circle. The dolphins would take one breath, Benoit-Bird said, and then dive down and begin the process anew.

"If one or two individual dolphins would break the circle or head to the surface to breathe, it breaks their whole system up," Benoit-Bird said. "They never did. So then you have to ask: How do they communicate with each other, and how do they pass on that knowledge to their young?"

The researchers are still working on the latter puzzle, but their acoustical monitoring study found that much of what scientists had assumed about dolphin communication may, in fact, be wrong in this species. In a companion article also published in Acoustical Society of America, the researchers describe how they used underwater hydrophones to listen to the dolphins during their feeding forays.

Dolphins are often vocal and their use of frequency-modulated whistles was thought by many to cue their coordinated behavior. But the researchers found they didn't use those whistles at all while hunting prey - just during non-foraging times or when they were surfacing. Instead, they used a series of "clicks," with the highest click rates taking place just prior to foraging.

"Whistles are omni-directional, like turning on a light bulb in a room," Benoit-Bird said. "Clicks, on the other hand, are directional like a laser. We think it may be a strategy to communicate only within the group and not to other potential lanternfish predators. Tuna and billfish are looking for the same prey and they can hear the whistles but not the clicks because the frequencies are too high and so focused.

"If you're lined up to eat this great smorgasbord, would you want to tell the tuna next door about it?"

Benoit-Bird's co-principal investigator on both papers was Whitlow W.L. Au, from the University of Hawaii.

Spinner dolphins are found primarily in tropical and subtropical waters, offshore and near island chains. They grow to a length of about six to seven feet, and feed on small, deep-ocean prey including lanternfish, shrimp and juvenile squid.

During their hunting forays, these athletic, acrobatic dolphins catch and consume a single fish at a time and each lanternfish may only be 3-5 inches long. To match their 3,200-calorie-per-day diet, they need to eat at least 650 fish each night - plus enough extra to fuel the energy they burn during the hunt, perhaps another 200 to 300 fish.

"To make that work, they need to eat about a fish a minute," Benoit-Bird said, "and we think that's why they've developed this elaborately complex system of group predation. Dolphins can't open their mouths like baleen whales and swallow large amounts of food at once. They have to target individual fish and it's too difficult and energy-consuming to hunt solo."

"It's tough to make a living in the subtropical ocean, which is something of a biological desert," she added. "They've had to adapt these unique behavioral methods to maximize their ability to capture prey."

Related Links
Oregon State University
Darwin Today At TerraDaily.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Were Dinosaurs Truly The First Great Migrators
Edmonton, Canada (SPX) Oct 24, 2008
Contrary to popular belief, polar dinosaurs may not have traveled nearly as far as originally thought when making their bi-annual migration.







  • More design flaws found in Ares I rocket
  • Copenhagen Suborbitals Tests Hybrid Rocket
  • Successful First Test For Vega's Zefiro 9-A Solid-Fuel Rocket Motor
  • Brazil hopes to launch satellite rocket in 2011: report

  • European science satellite launch delayed until at least February
  • Boeing Launches Third Italian Earth Observation Satellite
  • GOCE Launch Delayed Until 2009
  • Launch Complex Now Available For Civil, Commercial Launches

  • Endeavour Crew Arrives For Practice Countdown
  • Endeavour Nears Launch Pad 39A
  • STS-126 Mission Moves Forward
  • Atlantis Reaches VAB

  • Expedition 17 Set To Undock Today
  • Expedition 18 Takes Charge
  • Expedition 18 Crew Docks With Space Station
  • Expedition 18 Crew Launches From Baikonur

  • US space tourist remembers 'a beautiful ballet'
  • Astronauts To Vote From Space
  • Soyuz Lands In Kazakhstan With Two Russian cosmonauts And Tourist
  • Center To Study Acute Effects Of Space Radiation

  • China Successfully Launches Research Satellites
  • China To Launch FY-4 Weather Satellite Around 2013
  • Shenzhou 7 Astronauts In Good Health
  • Chinese Scientists Start Studying Samples From Shenzhou-7

  • VIPeR Robot Demonstrates Exceptional Agility
  • iRobot Receives Order From TARDEC For iRobot Warrior 700
  • iRobot Awarded US Army Contract For Robotic Systems
  • Robots Learn To Follow

  • Mars pioneers should stay there permanently, says Buzz Aldrin
  • Phoenix Lander Finishes Soil Delivery To Onboard Labs
  • Laser could aid search for life on Mars
  • Europe delays ExoMars mission, again

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement