![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Nuremberg, Germany (SPX) Mar 27, 2018
Blue-green algae are one of the oldest organisms in the world and have an important role to play in many ecosystems on Earth. However, it has always been difficult to identify fossils as blue-green algae without any trace of doubt. The reason is their unremarkable sheath made of calcium carbonate. A Master's student at Friedrich-Alexander-Universitat Erlangen-Nurnberg (FAU) has now developed a method which can help assign organisms to a particular species. Most organisms which once lived on Earth have become extinct. Not only individual species, but entire families and broader groups of species have disappeared forever, often leaving only very sparse information about their life and their biology. Researchers often find puzzling fossils they cannot allocate to any known group, especially dating from the period when many groups of organisms first evolved. Such microscopic organisms are often classed as blue-green algae, as on the surface they resemble the microscopic calcium carbonate sheaths of the algae. Blue-green algae are one of the oldest organisms on Earth and play a fundamental role in many marine and terrestrial ecosystems, for example by performing intensive photosynthesis or as food for a number of animals. In spite of their significance, little is known about their evolution, as their fossils are virtually shapeless tubes or bubbles of carbonate. It has therefore proved very difficult for researchers to determine whether fossils belong to blue-green algae or a completely different group of organisms. Working together with a team of researchers from FAU, Jan-Filip Pabler, a Master's student in Palaeobiology at FAU, has examined the crystallography of fossil structures using methods derived from materials science. Pabler compared carbonate fossils, so-called trilobites, with two microfossils which had not yet been able to be assigned, but which were extremely common in the oceans approximately 400 million years ago. He based his comparison on the observation that biologically formed carbonate structures have a very specific pattern. What is more, organisms form their skeletons in different ways - and these differences become apparent in the way crystals are arranged in the carbonate. Researchers were not only able to measure the direction in which crystals grew, but also misorientations between adjacent crystals. They found that in blue-green algae the crystals follow a less structured pattern with many misorientations. Trilobites, however, have an ordered structure with fewer misorientations. According to Pabler's supervisor, Dr. Emilia Jarochowska, 'our approach can be used in future to clarify the biological relationships between many other mysterious fossils in geological history'.
![]() ![]() A little creek has a big impact on local ecology Davis CA (SPX) Mar 26, 2018 A small restored area is having a big impact on regional birds, fish and animals, according to a study published in the journal Ecological Restoration by the University of California, Davis. Just 4 miles west of UC Davis' main campus sits a sliver of wildness called Putah Creek Riparian Reserve. On a recent spring day, below a canopy of valley oaks and eucalyptus trees came a twittering of chirps, trills and quacks. Two kingfishers crisscrossed the creek, calling to each other. Woodpeckers d ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |