Subscribe free to our newsletters via your
. Space Travel News .




FLORA AND FAUNA
Staying cool: Saharan silver ants
by Staff Writers
New York NY (SPX) Jun 22, 2015


Left: Sahara silver ants forage in the midday sun and look like droplets of mercury rolling on the desert surface. Right: The silvery appearance is created by a dense array of uniquely shaped hairs. Image courtesy Norman Nan Shi and Nanfang Yu, Columbia Engineering. For a larger version of this image please go here.

Nanfang Yu, assistant professor of applied physics at Columbia Engineering, and colleagues from the University of Zurich and the University of Washington, have discovered two key strategies that enable Saharan silver ants to stay cool in one of the hottest terrestrial environments on Earth.

Yu's team is the first to demonstrate that the ants use a coat of uniquely shaped hairs to control electromagnetic waves over an extremely broad range from the solar spectrum (visible and near-infrared) to the thermal radiation spectrum (mid-infrared), and that different physical mechanisms are used in different spectral bands to realize the same biological function of reducing body temperature.

Their research, "Saharan silver ants keep cool by combining enhanced optical reflection and radiative heat dissipation," is published in Science magazine. "This is a telling example of how evolution has triggered the adaptation of physical attributes to accomplish a physiological task and ensure survival, in this case to prevent Sahara silver ants from getting overheated," Yu says.

"While there have been many studies of the physical optics of living systems in the ultraviolet and visible range of the spectrum, our understanding of the role of infrared light in their lives is much less advanced. Our study shows that light invisible to the human eye does not necessarily mean that it does not play a crucial role for living organisms."

The project was initially triggered by wondering whether the ants' conspicuous silvery coat was important in keeping them cool in blistering heat. Yu's team found that the answer to this question was much broader once they realized the important role of infrared light. Their discovery that that there is a biological solution to a thermoregulatory problem could lead to the development of novel flat optical components that exhibit optimal cooling properties.

"Such biologically inspired cooling surfaces will have high reflectivity in the solar spectrum and high radiative efficiency in the thermal radiation spectrum," Yu explains. "So this may generate useful applications such as a cooling surface for vehicles, buildings, instruments, and even clothing."

Saharan silver ants (Cataglyphis bombycina) forage in the Saharan Desert in the full midday sun when surface temperatures reach up to 70C (158F), and they must keep their body temperature below their critical thermal maximum of 53.6C (128.48F) most of the time.

In their wide-ranging foraging journeys, the ants search for corpses of insects and other arthropods that have succumbed to the thermally harsh desert conditions, which they are able to endure more successfully. Being most active during the hottest moment of the day also allows these ants to avoid predatory desert lizards. Researchers have long wondered how these tiny insects (about 10 mm, or 3/8" long) can survive under such thermally extreme and stressful conditions.

Using electron microscopy and ion beam milling, Yu's group discovered that the ants are covered on the top and sides of their bodies with a coating of uniquely shaped hairs with triangular cross-sections that keep them cool in two ways. These hairs are highly reflective under the visible and near-infrared light, i.e., in the region of maximal solar radiation (the ants run at a speed of up to 0.7 meters per second and look like droplets of mercury on the desert surface).

The hairs are also highly emissive in the mid-infrared portion of the electromagnetic spectrum, where they serve as an antireflection layer that enhances the ants' ability to offload excess heat via thermal radiation, which is emitted from the hot body of the ants to the cold sky. This passive cooling effect works under the full sun whenever the insects are exposed to the clear sky.

"To appreciate the effect of thermal radiation, think of the chilly feeling when you get out of bed in the morning," says Yu. "Half of the energy loss at that moment is due to thermal radiation since your skin temperature is temporarily much higher than that of the surrounding environment."

The researchers found that the enhanced reflectivity in the solar spectrum and enhanced thermal radiative efficiency have comparable contributions to reducing the body temperature of silver ants by 5 to 10 degrees compared to if the ants were without the hair cover.

"The fact that these silver ants can manipulate electromagnetic waves over such a broad range of spectrum shows us just how complex the function of these seemingly simple biological organs of an insect can be," observes Norman Nan Shi, lead author of the study and PhD student who works with Yu at Columbia Engineering.

Yu and Shi collaborated on the project with Rudiger Wehner, professor at the Brain Research Institute, University of Zurich, Switzerland, and Gary Bernard, electrical engineering professor at the University of Washington, Seattle, who are renowned experts in the study of insect physiology and ecology.

The Columbia Engineering team designed and conducted all experimental work, including optical and infrared microscopy and spectroscopy experiments, thermodynamic experiments, and computer simulation and modeling. They are currently working on adapting the engineering lessons learned from the study of Saharan silver ants to create flat optical components, or "metasurfaces," that consist of a planar array of nanophotonic elements and provide designer optical and thermal radiative properties.

Yu and his team plan next to extend their research to other animals and organisms living in extreme environments, trying to learn the strategies these creatures have developed to cope with harsh environmental conditions.

"Animals have evolved diverse strategies to perceive and utilize electromagnetic waves: deep sea fish have eyes that enable them to maneuver and prey in dark waters, butterflies create colors from nanostructures in their wings, honey bees can see and respond to ultraviolet signals, and fireflies use flash communication systems," Yu adds.

"Organs evolved for perceiving or controlling electromagnetic waves often surpass analogous man-made devices in both sophistication and efficiency. Understanding and harnessing natural design concepts deepens our knowledge of complex biological systems and inspires ideas for creating novel technologies."

The study was supported by the National Science Foundation under the Electronics, Photonics, and Magnetic Devices program (ECCS-1307948) and Physics of Living Systems program (PHY-1411445), and the Air Force Office of Scientific Research (AFOSR) Multidisciplinary Research Program of the University Research Initiative (MURI) program (FA9550-14-1-0389).


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Columbia University School of Engineering and Applied Science
Darwin Today At TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





FLORA AND FAUNA
Hundreds arrested in global crackdown on wildlife contraband
The Hague (AFP) June 18, 2015
A global crackdown on wildlife trafficking has netted "huge" amounts of whale bones, rhino horn, ivory and other contraband, leading to hundreds of arrests, European and Asian authorities announced Thursday. Operation Cobra III saw police in 62 countries swoop on suspected wildlife smugglers between mid-March and May, European police agency Europol said in a statement. The operation, whi ... read more


FLORA AND FAUNA
Garvey Spacecraft selects Pacific Spaceport Complex

Sentinel-2A satellite ready for Launch from Kourou

Arianespace restructure signals major changes in company governance

NASA issues RFP for New Class of Launch Services

FLORA AND FAUNA
NASA Signs Agreements to Advance Agency's Journey to Mars

New study favors cold, icy early Mars

Scientists find methane in Mars meteorites

Red Planet Rising

FLORA AND FAUNA
Crashing comets may explain mysterious lunar swirls

Google Lunar X-Prize meets Yoda

China, Russia plan joint landing on the Moon

NASA's LRO Moves Closer to the Lunar Surface

FLORA AND FAUNA
Different Faces of Pluto Emerging in New Images from New Horizons

One Month from Pluto

NASA Lets You Experience "Pluto Time" with New Custom Tool

Pluto probably a binary planet with largest moon Charon

FLORA AND FAUNA
Helium-Shrouded Planets May Be Common in Our Galaxy

Hubble detects stratosphere-like layer around exoplanet

Work-experience schoolboy discovers a new planet

Hubble in 'Oh Planet, What Art Thou?' 25th Anniversary Video

FLORA AND FAUNA
RS-25 Engine Fires Up for Third Test in Series

Boeing to Build Third All-Electric

Faster Than Light: China's Hypersonic WU-14 Getting on Pentagon's Nerves

US space firm supports need to ease Russian rocket engines ban

FLORA AND FAUNA
Electric thruster propels China's interstellar ambitions

China Plans First Ever Landing On The Lunar Far Side

China ranked 4th among world space powers

3D printer making Chinese space suit parts

FLORA AND FAUNA
Philae wake-up triggers intense planning

UCLA-led NASA mission provides closest ever look at dwarf planet Ceres

The quest to find Philae

Sunset Jets on Rosetta's Comet




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.