Space Travel News  
STELLAR CHEMISTRY
Star clusters are only the tip of the iceberg
by Staff Writers
Vienna, Austria (SPX) Oct 16, 2020

A panoramic view of the nearby Alpha Persei star cluster and its corona. The member stars in the corona are invisible. These are only revealed thanks to the combination of precise measurements with the ESA Gaia satellite and innovative machine learning tools ( Stefan Meingast, made with Gaia Sky)

"Clusters form big families of stars that can stay together for large parts of their lifetime. Today, we know of roughly a few thousand star clusters in the Milky Way, but we only recognize them because of their prominent appearance as rich and tight groups of stars. Given enough time, stars tend to leave their cradle and find themselves surrounded by countless strangers, thereby becoming indistinguishable from their neighbours and hard to identify" says Stefan Meingast, lead author of the paper published in Astronomy and Astrophysics.

"Our Sun is thought to have formed in a star cluster but has left its siblings behind a long time ago" he adds.

Thanks to the ESA Gaia spacecraft's precise measurements, astronomers at the University of Vienna have now discovered that what we call a star cluster is only the tip of the iceberg of a much larger and often distinctly elongated distribution of stars.

"Our measurements reveal the vast numbers of sibling stars surrounding the well-known cores of the star clusters for the first time. It appears that star clusters are enclosed in rich halos, or coronae, more than 10 times as large as the original cluster, reaching far beyond our previous guesses.

The tight groups of stars we see in the night sky are just a part of a much larger entity" says Alena Rottensteiner, co-author and master student at the University of Vienna. "There is plenty of work ahead revising what we thought were basic properties of star clusters, and trying to understand the origin of the newfound coronae."

To find the lost star siblings, the research team developed a new method that uses machine learning to trace groups of stars which were born together and move jointly across the sky. The team analyzed 10 star clusters and identified thousands of siblings far away from the center of the compact clusters, yet clearly belonging to the same family.

An explanation for the origin of these coronae remains uncertain, yet the team is confident that their findings will redefine star clusters and aid our understanding of their history and evolution across cosmic time.

"The star clusters we investigated were thought to be well-known prototypes, studied for more than a century, yet it seems we have to start thinking bigger. Our discovery will have important implications for our understanding of how the Milky Way was built, cluster by cluster, but also implications for the survival rate of proto-planets far from the sterilizing radiation of massive stars in the centers of clusters", says Joao Alves, Professor of Stellar Astrophysics at the University of Vienna and a co-author of the paper.

"Dense star clusters with their massive but less dense coronae might not be a bad place to raise infant planets after all."

Research paper


Related Links
University Of Vienna
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Modelling extreme magnetic fields and temperature variation on distant stars
Leeds UK (SPX) Oct 14, 2020
New research is helping to explain one of the big questions that has perplexed astrophysicists for the past 30 years - what causes the changing brightness of distant stars called magnetars. Magnetars were formed from stellar explosions or supernovae and they have extremely strong magnetic fields, estimated to be around 100 million, million times greater than the magnetic field found on earth. The magnetic field generates intense heat and x-rays. It is so strong it also affects the physical p ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
STELLAR CHEMISTRY
This transforming rover can explore the toughest terrain

Airbus to bring first Mars samples to Earth

NASA, JAXA to Send Sampling Technology to Moon and Phobos

China's Mars probe completes deep-space maneuver

STELLAR CHEMISTRY
Faces Behind NASA's Artemis Gateway - Sharada Vitalpur and Lindsey Ingram

Airbus selected for ESA's Moon lander study

UK and NASA sign international agreement ahead of mission to the Moon

China's Chang'e-4 probe resumes work for 23rd lunar day

STELLAR CHEMISTRY
The mountains of Pluto are snowcapped, but not for the same reasons as on Earth

Arrokoth: Flattening of a snowman

SwRI study describes discovery of close binary trans-Neptunian object

JPL meets unique challenge, delivers radar hardware for Jupiter Mission

STELLAR CHEMISTRY
Earth-like planets often come with a bodyguard

No social distancing at the beginning of life

Vaporized metal in the air of an exoplanet

Massive stars are factories for ingredients to life

STELLAR CHEMISTRY
Arianespace offers new shared smallsat payload opportunities on its Vega launcher

Final hot firing proves P120C booster for Ariane 6

ENPULSION launches its new MICRO family of satellite thrusters

Self-eating rocket whets appetite for development

STELLAR CHEMISTRY
China's Xichang launch center to carry out 10 missions by end of March

Eighteen new astronauts chosen for China's space station mission

NASA chief warns Congress about Chinese space station

China's new carrier rocket available for public view

STELLAR CHEMISTRY
NASA to Broadcast OSIRIS-REx Asteroid Sample Collection Activities

Planetary astronomer co-authors studies of asteroid as member of NASA's OSIRIS-REx mission

SwRI scientists study the rugged surface of near-Earth asteroid Bennu

Scientists peer inside an asteroid









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.